聚醚酰亚胺中空纤维膜制备及其制氢性能研究 |
作者:杨飞1, 张园园1, 王潮1, 杨扬2, 崔晶2, 张玥1, 张玉梅1 |
单位: 1. 先进纤维材料全国重点实验室, 东华大学 材料科学与工程学院, 上海 201620; 2. 中石化(上海)石油化工研究院有限公司, 上海 201208 |
关键词: 聚醚酰亚胺; 中空纤维膜; 流变性能; 可纺性; 气体分离 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.009 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(3):88-98 |
摘要: |
为了制备具有高H2通量和H2选择性的制氢PEI中空纤维膜,以N-甲基吡咯烷酮(NMP)为溶剂,制备了质量分数在20%~40%的聚醚酰亚胺(PEI)溶液,当PEI质量分数低于25%时,溶液黏度过低不利于纺丝;但是当PEI质量分数在30%~40%时,零切黏度随PEI质量分数增加呈指数级增长,lnη0和1 000/T关系在20 ℃时偏离了线性关系,因此将纺丝温度提高至50 ℃,以提高纺丝液流动性和可纺性。通过纺丝实验发现,随着PEI质量分数从25%提升至40%,PEI中空纤维膜的强度从17.14 MPa提升至29.95 MPa,测试PEI质量分数为30%~40%的PEI中空纤维膜发现,H2/CH4的分离系数从1.93最高可提升至6.69,但气体通量大幅降低,H2通量从178.12 GPU降低至6.56 GPU;对PEI质量分数30%的PEI中空纤维膜进行硅橡胶涂层,H2/CH4的分离系数提升至12.55。流变研究表明,在PEI溶液中添加比例超过14%(质量分数)的非溶剂会使溶液处于不稳定的状态,当PEI/NMP/THF/EtOH质量比为30/56/8/6时,PEI中空纤维膜的H2/CH4分离系数达42.30,表明其具有优异的制氢性能。 |
In order to prepare hydrogen-producing PEI hollow fiber membranes with high H2 flux and H2 selectivity, in this paper, polyetherimide (PEI) solutions with mass fractions in the range of 20% to 40% were prepared using N-dimethylpyrrolidone (NMP) as the solvent, and the viscosity was too low to be favorable for spinning when the PEI mass fraction was lower than 25%; However, when the PEI mass fraction was from 30% to 40%, the zero-shear viscosity increased exponentially with the increase in concentration, and the lnη0 and 1 000/T relationship deviated from the linear relationship at 20 ℃. Therefore, the spinning temperature was increased to 50 ℃ to improve the spinning liquid fluidity and spinnability. Through spinning experiments, it was found that the strength of PEI hollow fiber membranes increased from 17.14 MPa to 29.95 MPa as the PEI mass fraction increased from 25% to 40%, and testing PEI hollow fiber membranes with PEI mass fractions ranging from 30% to 40% revealed that the separation coefficient of H2/CH4 could be increased from 1.93 to a maximum of 6.69, but the gas flux decreased dramatically, with the H2 flux decreased from 178.12 GPU to 6.56 GPU; Silicone rubber coating of 30% PEI hollow fibre membranes improved the H2/CH4 separation coefficient to 12.55. Rheological studies showed that the addition of non-solvents with a mass fraction of more than 14% to the PEI solution would cause the solution to be in an unstable state, and when the mass ratio of PEI/NMP/THF/EtOH was 30/56/8/6, the H2/CH4 separability was up to 42.30, indicating that the PEI hollow fibre membrane has excellent hydrogen production performance. |
基金项目: |
作者简介: |
杨飞(2000-),男,江苏淮安人,硕士研究生,主要从事聚酰亚胺类中空纤维膜的制备和性能研究. |
参考文献: |
[1]Maestre V M, Ortiz A, Ortiz I. Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications[J]. Renew Sust Energ Rev, 2021, 152: 111628. [2]Hu G P, Chen C, Lu H T, et al. A review of technical advances, barriers, and solutions in power to hydrogen(P2H) roadmap[J]. Engineering, 2020, 6: 1364-1380. [3]Wappler M, Unguder D, Lu X, et al. Building the green hydrogen market-current state and outlook on green hydrogen demand and electrolyzer manufacturing[J]. Int J Hydrogen Energ, 2022, 47: 33551-33570. [4]Isabella B, Felipe A, Diza A, et al. Biocatalytic membrane reactor modeling for fermentative hydrogen production from wastewater: A review[J].Int J Hydrogen Energ, 2023, 48: 13024-13043. [5]Sarkar O, Modestra J A, Rova U, et al. Waste-derived renewable hydrogen and Methane: Towards a potential energy transition solution[J]. Fermentation, 2023, 9: 368. [6]Karousos D S, Qadir D, Sapalidis A A, et al. Polymeric, metallic and carbon membranes for hydrogen separation: A review[J]. Gas Sci Eng, 2023, 120: 205167. [7]Demir M E, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios[J]. Int J Hydrogen Energ, 2018, 43(22): 10420-10430. [8]Liu H, Zhang J, Sun P, et al. An overview of TiFe alloys for hydrogen storage: structure, processes, properties, and applications[J]. J Energy Stor, 2023, 68: 107772. [9]Moral G, Ortiz A, Gorri D, et al. Matrimid/LaNi5 mixed matrix membranes for selective hydrogen separation from industrial waste gas streams[J]. J Membr Sci, 2025, 717: 123591. [10]Ghosal K, Freeman B D. Gas separation using polymer membranes: an overview[J]. Polym Adv Technol, 1994, 5(11): 673-697. [11]Chen G, Buck F, Kistner I, et al. A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma[J]. Chem Eng J, 2020, 392: 123699. [12]Baker R W. Future directions of membrane gas separation technology[J]. Ind Eng Chem Res, 2002, 41(6): 1393-1411. [13]Sanders D F, Smith Z P, Guo R, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: A review[J]. Polymer, 2013, 54(18): 4729-4761. [14]Zornoza B, Casado C, Navajas A. Chapter 11 advances in hydrogen separation and purification with membrane technology[M]. Amsterdam: Elsevier, 2013: 245-268. [15]Claudia S B, William J K. Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking[J]. J Membr Sci, 1999, 155(1): 145-154. [16]沈立强, 徐志康, 徐又一. 聚酰亚胺中空纤维膜研究进展[J]. 功能材料, 2000, 31: 20-22. [17]Alqaheem Y, Alomair A. Recent developments in polyetherimide membrane for gas separation[J]. J Chin Chem Soc, 2019, 21: 1-7. [18]Dai Y, Ruan X H, Bai F, et al. High solvent resistance PTFPMS/PEI hollow fiber composite membrane for gas separation[J]. Appl Surf Sci, 2016, 360: 164-173. [19]丑树人, 任吉中, 李晖, 等. 高性能聚醚酰亚胺中空纤维气体分离膜的制备与分离性能[J]. 膜科学与技术, 2010, 30(3): 21-26. [20]Dai Y, Johnson J R, Karvan O, et al. Ultem/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations[J]. J Membr Sci, 2012, 401: 76-82. [21]Cox W P, Merz E H. Correlation of dynamic and steady flow viscosities[J]. J Polym Sci A Polym Chem, 2010, 28(118): 619-622. [22]Carreau P J. Rheological equations from molecular network theories[J]. J Rheol, 1972, 16(1): 99-127. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号