基于铝离子配位构筑超分子聚合物网络膜及其H2/CO2分离性能
作者:周子豪, 何悦, 董亮亮, 张春芳, 白云翔
单位: 江南大学 合成与生物胶体教育部重点实验室 化学与材料工程学院, 无锡 214122
关键词: 芳醚型聚苯并咪唑; 配位交联反应; 膜; H2/CO2分离
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.012
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(3):118-126

摘要:
基于铝离子和芳醚型聚苯并咪唑(OPBI)之间的配位交联反应,通过膜浸泡法制备了OPBI-Al3+膜。研究了水溶液中Al3+的浓度对膜物理化学性能及其H2/CO2分离性能的影响。研究表明:OPBI链段上咪唑环的N-可以与水溶液中的Al3+发生配位交联反应,形成致密的交联结构。随着水溶液中Al3+浓度的增加,OPBIAl3+膜的凝胶含量、交联度以及密度先增加随后几乎不再变化。当Al3+浓度为8.44×10-2 mol/L时,在35 ℃下,OPBI-Al3+-8.44膜的H2渗透率为2.79 Barrer,略低于纯OPBI膜,而H2/CO2分离选择性达到了23.60,比纯膜提高了438.81%,分离性能突破了2008年的Robeson上限。
 
In this paper, OPBI-Al3+ membranes were prepared by membrane immersion method based on the coordination cross-linking reaction between aluminum ions and aryl ether polybenzimidazole (OPBI). The effects of Al3+ concentration in aqueous solution on the physicochemical properties and H2/CO2 separation performance of the membrane were studied. The results show that the N- of the imidazole  ring on the OPBI chain can coordinate and cross-link with Al3+ in the aqueous solution to form a dense cross-linked structure. With the increase of Al3+ concentration in aqueous solution, the gel content, cross-linking degree and density of OPBI-Al3+ membrane first increased, and then almost unchanged. When the concentration of Al3+ was 8.44×10-2 mol/L, the H2 permeability of OPBI-Al3+-8.44 membrane was 2.79 Barrer at 35 ℃, which was slightly lower than that of the pure membrane, while the selectivity of H2/CO2 reached 23.60, which was 438.81% higher than that of the pure membrane, breaking through the upper limit of Robeson in 2008. 
 

基金项目:
国家自然科学基金面上项目(22075107)

作者简介:
周子豪(2000-),男,湖北荆州人,硕士生,主要从事气体分离膜的研究

参考文献:
[1]Lu X, Krutoff A C, Wappler M, et al. Key influencing factors on hydrogen storage and transportation costs: A systematic literature review[J]. Int J Hydrogen Energ, 2025, 105: 308-325.
[2]Mobayen S, Assareh E, Lzadyar N, et al. Multi-functional hybrid energy system for zero-energy residential buildings: Integrating hydrogen production and renewable energy solutions[J]. Int J Hydrogen Energ, 2025, 102: 647-672.
[3]Lee J, Huh C, Seo Y, et al. Reduction of emission and exergy destruction in low-temperature heat-fired hydrogen production[J]. Int J Hydrogen Energ, 2025, 99: 1032-1046.
[4]Zhang J Q, Dong P, Lei H F, et al. Coal-to-aromatics process integrated with dry/steam-mixed reforming: Techno-economic analysis and environmental evaluation[J]. Chem Eng Sci, 2025, 304: 120934.
[5]Singh D, Sirini P, Lombardi L. Review of reforming processes for the production of green hydrogen from landfill gas[J]. Energies, 2025, 18(1): 15.
[6]Abetz V, Brinkmann T, Dijkstra M, et al. Developments in membrane research: From material via process design to industrial application[J]. Adv Eng Mater, 2006, 8(5): 328-358.
[7]Chandramouli M, Ningaiah S, Basavanna V. A comprehensive review on advancements in modification strategies of polymer blends for enhanced carbon dioxide capture and reuse[J]. Environ Qual Manag, 2025, 34(3): e70039.
[8]Tyan N S, Polotskaya G A, Meleshko T K, et al. Influence of the molecular polyimide brush on the gas separation properties of polyphenylene oxide[J]. Russ J Appl Chem, 2019, 92(3): 360-366.
[9]Moon J D, Borjigin H, Liu R, et al. Impact of humidity on gas transport in polybenzimidazole membranes[J]. J Membr Sci, 2021, 639: 119758.
[10]Feng F, Wu J, Weber M, et al. Facile infiltration of polyethyleneimine as a strong CO2 retardant in scalable dual-polymer membranes for H2/CO2 separation[J]. J Membr Sci, 2024, 711: 123217.
[11]Karunaweera C, Panapitiya N P, Panangala S, et al. Carbon-carbon composite membranes derived from small-molecule-compatibilized immiscible PBI/6FDA-DAM-DABA polymer blends[J]. Separations, 2024, 11(4), 108.
[12]Kumar A, Huang L, Hu L Q, et al. Facile one-pot synthesis of PdM (M=Ag, Ni, Cu, Y) nanowires for use in mixed matrix membranes for efficient hydrogen separation[J]. J Mater Chem A, 2021, 9(21): 12755-12762.
[13]Zhu L X, Swihart M T, Lin H Q. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation[J]. J Mater Chem A, 2017, 5(37): 19914-19923.
[14]Wang K Y, Weber M, Chung T S. Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: A review[J]. J Mater Chem A, 2022, 10(16): 8687-8718.
[15]Kumbharkar S C, Karadkar P B, Kharul U K. Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture[J]. J Membr Sci, 2006, 286(1/2): 161-169.
[16]Yang T X, Xiao Y C, Chung T S. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification[J]. Energ Environ Sci, 2011, 4(10): 4171-4180.
[17]Yang T X, Shi G M, Chung T S. Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures[J]. Adv Energy Mater, 2012, 2(11): 1358-1367.
[18]Hosseini S S, Teoh M M, Chung T S. Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks[J]. Polymer, 2008, 49(6): 1594-1603.
[19]Jiao Y, Wu Q, Lai W, et al. Enhancement of molecular sieving and plasticization resistance of polybenzimidazole membranes through chemical crosslinking for helium recovery from multi-component natural gas[J]. Sep Purif Technol, 2024, 331: 125560.
[20]Hu L Q, Fan S H, Huang L, et al. Supramolecular polymer networks of ion-coordinated polybenzimidazole with simultaneously improved H2 permeability and H2/CO2 selectivity[J]. Macromolecules, 2022, 55(15): 6901-6910.
[21]屈建. 基于金属离子配位作用增强壳聚糖三维材料的研究[D]. 杭州: 浙江大学, 2011.
[22]Zhu B, He S S, Wu Y D, et al. One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture[J]. Engineering, 2022, 46: 220-228.
[23]Wang N, Feng H W, Hao X H, et al. Dynamic covalent bond and metal coordination bond-cross-linked silicone elastomers with excellent mechanical and aggregation-induced emission properties[J]. Polym Chem-uk, 2023, 14(12): 1396-1403.
[24]Veetil K A, Kannan S, Sun E K, et al. Thermal debromination-induced cross-linking of PIM-polyimide membranes: Improved CO2 gas permeability, selectivity, and separation performance[J]. Sep Purif Technol, 2025, 359(3): 130755.
[25]Naderi A, Tashvigh A A, Chung T S. H2/CO2 separation enhancement via chemical modification of polybenzimidazole nanostructure[J]. J Membr Sci, 2019, 572: 343-349.
[26]Hu L Q, Bui V T, Huang L, et al. Facilely cross-linking polybenzimidazole with polycarboxylic acids to improve H2/CO2 separation performance[J]. ACS Appl Mater Interfaces, 2021, 13(10): 12521-12530.
[27]Zhu L X, Swihart M T, Lin H Q. Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation[J]. Energ Environ Sci, 2018, 11(1): 94-100.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号