耦合机器学习与高通量计算研究疏水MOFs在CO2/C2H2膜分离中的构效关系
作者:韩荣美, 韩琪, 张政清, 孙玉绣, 乔志华
单位: 天津工业大学 先进分离膜材料全国重点实验室 化学工程与技术学院,天津 300387
关键词: 金属有机骨架; 分子模拟; 机器学习; CO2/C2H2分离
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.014
分类号: TQ051.8
出版年,卷(期):页码: 2025,45(3):136-144

摘要:
二氧化碳/乙炔(CO2/C2H2)分离在工业过程中的重要性推动了高效膜材料的开发,但膜材料在潮湿环境下的分离性能不稳定,因此开发能够在潮湿条件下保持优异性能的分离膜成为关键。本研究首先以ZIF-8的亨利系数为标准,建立了疏水性MOF数据库。通过巨正则蒙特卡罗(grand canonical Monte Carlo, GCMC)模拟和分子动力学(MD)模拟分别计算了用于CO2/C2H2分离的MOF的热力学性质和扩散性质,筛选出Top 20个高性能疏水MOF膜。随后,基于MOFs的特征描述符和模拟结果,训练和测试了5种不同的机器学习(ML)模型,并采用最优的ML模型揭示了影响CO2/C2H2分离性能的关键因素。最后,通过建立构效关系分析,确定了CO2/C2H2分离的最佳MOF结构参数范围,为MOF膜材料的开发与优化提供了理论依据。
The CO2/C2H2 separation in industrial processes has driven the development of highly efficient membrane materials. However, the presence of water under humidity environments can significantly impact the separation performance of these membranes. Thus, the development of separation membranes capable of maintaining superior performance under humidity conditions has become a critical area of focus. In this study, the hydrophobic MOF database was established, with the Henry coefficient of ZIF-8 serving as the reference. Then, the thermodynamic properties and diffusion coefficients of MOFs used for CO2/C2H2 separation were calculated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Based on these calculations, the membrane separation performance was evaluated, and the top 20 hydrophobic MOF membranes with high separation performance were identified. The MOF descriptors and simulation results were utilized as inputs to train and test five different machine learning (ML) models and the key factors influencing CO2/C2H2 separation performance were uncovered with the optimized ML model. Finally, the optimal range of MOF structural parameters for CO2/C2H2 separation was determined. This study provides theoretical foundations for the development and optimization of MOF membrane materials. 
 

基金项目:
国家自然科学基金项目(22108202)

作者简介:
韩荣美(2000-),女,山东德州人,硕士研究生,研究方向为MOF膜材料筛选与设计

参考文献:
[1]Li X Y, Song Y, Zhang C X, et al. Inverse CO2/C2H2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving[J]. Sep Purif Technol, 2021, 279: 119608.
[2]Meng L K, Yang L X, Chen C L, et al. Selective acetylene adsorption within an imino-functionalized nanocage-based metal-organic framework[J]. ACS Appl Mater Interfaces, 2020, 12(5): 5999-6006.
[3]Yang S Q, Xing B, Wang L L, et al. Boosting acetylene packing density within an isoreticular metal-organic framework for efficient C2H2/CO2 separation[J]. Chem & Bio Engineering, 2024, 1(3): 245-251.
[4]Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
[5]Li W B. Metal-organic framework membranes: Production, modification, and applications[J]. Prog Mater Sci, 2019, 100: 21-63.
[6]Kang Z X, Fan L L, Sun D F. Recent advances and challenges of metal-organic framework membranes for gas separation[J]. J Mater Chem A, 2017, 5(21): 10073-10091.
[7]Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428.
[8]Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?[J]. J Am Chem Soc, 2012, 134(36): 15016-15021.
[9]Zhang Y X, Liu Y, Hang Y T, et al. Crystal seeds induced interfacial growth of zirconium metal-organic framework membranes towards efficient hydrogen purification[J]. J Membr Sci, 2024, 689: 122171.
[10]Zhou S, Wei Y Y, Li L B, et al. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Sci Adv, 2018, 4(10): eaau1393.
[11]Liu H,Cong S,Yan X,et al. Honeycomb-like hofmann-type metal-organic framework membranes for C2H2/CO2 and H2/CO2 separation[J]. J Membr Sci, 2023, 669:121282.
[12]Xie L H, Xu M M, Liu X M, et al. Hydrophobic metal-organic frameworks: Assessment, construction, and diverse applications[J]. Adv Sci, 2020, 7(4): 1901758.
[13]Huang H L, Zhang W J, Liu D H, et al. Understanding the effect of trace amount of water on CO2 capture in natural gas upgrading in metal-organic frameworks: A molecular simulation study[J]. Ind Eng Chem Res, 2012, 51(30): 10031-10038.
[14]Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
[15]Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527.
[16]Shafiei M, Alivand M S, Rashidi A, et al. Synthesis and adsorption performance of a modified micro-mesoporous MIL-101 (Cr) for VOCs removal at ambient conditions[J]. Chem Eng J, 2018, 341: 164-174.
[17]Daglar H, Keskin S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations[J]. Coordin Chem Rev, 2020, 422: 213470.
[18]Gómez-Gualdrón D A, Colón Y J, Zhang X, et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage[J]. Energ Environ Sci, 2016, 9(10): 3279-3289.
[19]Wilmer C E, Leaf M, Lee C Y, et al. Large-scale screening of hypothetical metal-organic frameworks[J]. Nat Chem, 2012, 4(2): 83-89.
[20]Li S, Chung Y G, Simon C M, et al. High-throughput computational screening of multivariate metal-organic frameworks (MTV-MOFs) for CO2 capture[J]. J Phys Chem Lett, 2017, 8(24): 6135-6141.
[21]Zhang Z Q, Cao X H, Geng C X, et al. Machine learning aided high-throughput prediction of ionic liquid@ MOF composites for membrane-based CO2 capture[J]. J Membr Sci, 2022, 650: 120399.
[22]He Y J, Cao X H, Zhang Z Q, et al. Discovery of high-performing metal-organic frameworks for efficient SF6/N2 separation: A combined computational screening, machine learning, and experimental study[J]. Ind Eng Chem Res, 2023, 62(19): 7642-7649.
[23]Chung Y G, Haldoupis E, Bucior B J, et al. Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019[J]. J Chem Eng Data, 2019, 64(12): 5985-5998.
[24]Moghadam P Z, Fairen-Jimenez D, Snurr R Q. Efficient identification of hydrophobic MOFs: Application in the capture of toxic industrial chemicals[J]. J Mater Chem A, 2016, 4(2): 529-536.
[25]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1477-1504.
[26]Willems T F, Rycroft C H, Kazi M, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Micropor Mesopor Mater, 2012, 149(1): 134-141.
[27]Rappé A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. J Am Chem Soc, 1992, 114(25): 10024-10035.
[28]Wilmer C E, Kim K C, Snurr R Q. An extended charge equilibration method[J]. J Phys Chem Lett, 2012, 3(17): 2506-2511.
[29]Harris J G, Yung K H. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. J Phys Chem, 1995, 99(31): 12021-12024.
[30]Fischer M, Hoffmann F, Frba M. New microporous materials for acetylene storage and C2H2/CO2 separation: Insights from molecular simulations[J]. Chem Phys Chem, 2010, 11(10): 2220-2229.
[31]Yang Q Y, Liu D H, Zhong C L, et al. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chem Rev, 2013, 113(10): 8261-8323.
[32]Avci G, Velioglu S, Keskin S. High-throughput screening of MOF adsorbents and membranes for H2 purification and CO2 capture[J]. ACS Appl Mater, 2018, 10(39): 33693-33706.
[33]Daglar H, Keskin S. High-Throughput screening of metal organic frameworks as fillers in mixed matrix membranes for flue gas separation[J]. Adv Theory Simul, 2019, 2(11): 1900109.
[34]Halder P, Singh J K. High-throughput screening of metal-organic frameworks for ethane-ethylene separation using the machine learning technique[J]. Energ Fuel, 2020, 34(11): 14591-14597.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号