基于电化学阻抗解析膜蒸馏中硫酸钙与二氧化硅的不同结垢行为 |
作者:周鹭, 韩旻媛, 李汉杰, 刘剑, 韩乐 |
单位: 重庆大学 环境与生态学院, 重庆 400045 |
关键词: 膜蒸馏; 电化学阻抗谱; 膜结垢 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.016 |
分类号: TQ028; TK2 |
出版年,卷(期):页码: 2025,45(3):155-162 |
摘要: |
膜蒸馏(MD)作为处理高盐废水的新兴技术,无机结垢引发的堵塞和膜湿润限制了其广泛应用。膜结垢现象的深入分析仍需要进一步探讨,界面电阻抗特性是潜在的分析切入点。比较了代表性无机物硫酸钙和二氧化硅在MD过程中的结垢行为,硫酸钙导致更早的膜通量下降和显著的膜润湿。扫描电镜结果证实了硫酸钙和二氧化硅结垢形态和分布上的显著差异,机械拉伸测试表明硫酸钙结垢降低了膜材料的机械性能。结合膜孔外部与内部界面理化特征,电化学阻抗谱(EIS)揭示了硫酸钙结晶于膜表面及孔内部,降低了膜层的电阻;二氧化硅主要在膜表面形成结垢层,导致膜表面电阻增加。硫酸钙和二氧化硅的不同结垢行为对膜的电化学性能影响各异。该结果为未来膜工艺中高效结垢控制策略的研发提供了重要的理论依据。 |
Membrane distillation (MD), as an emerging technology for treating high-salt wastewater, is limited in its wide application by inorganic fouling-induced clogging and membrane wetting. The in-depth analysis of membrane fouling phenomena still needs to be further explored, and interfacial electrical impedance characterization is a potential analytical entry point, but no systematic report on resolving membrane fouling has been reported in the literature. In this paper, we compare the fouling behavior of representative inorganic species, gypsum and silica, during the MD process, with gypsum leading to earlier membrane flux decline and significant membrane wetting. Scanning electron microscopy results confirmed significant differences in the morphology and distribution of gypsum and silica fouling, and mechanical tensile tests showed that gypsum scaling reduced the mechanical properties of membrane materials. Combined with the physicochemical characteristics of the interface between the external and internal membrane pores, electrochemical impedance spectroscopy (EIS) revealed that gypsum crystallized on the membrane surface and inside the pores, which reduced the membrane resistance, while silica formed a fouling layer mainly on the membrane surface, which led to an increase in the membrane surface resistance. The different fouling behaviors of gypsum and silica have different effects on the electrochemical performance of the membrane, and the results provide an important theoretical basis for the development of efficient fouling control strategies in future membrane processes. |
基金项目: |
国家自然科学基金项目(52270058); 重庆市科技局新重庆青年创新人才项目(2024NSCQ-qncxX0233); 重庆市自然科学基金项目(CSTB2024NSCQ-MSX1123) |
作者简介: |
周鹭(2000-), 女,重庆巴南人,硕士研究生,研究方向为膜法水处理、膜蒸馏的膜污染机理研究等 |
参考文献: |
[1]Deshmukh A, Boo C, Karanikola V, et al. Membrane distillation at the water-energy nexus:Limits, opportunities, and challenges[J]. Energy Environ Sci, 2018, 11(5):1177-1196. [2]Wang W, Du X W, Vahabi H, et al. Trade-off in membrane distillation with monolithic omniphobic membranes[J]. Nat Commun, 2019, 10(1):3220. [3]Drioli E, Ali A, Mavedonio F. Membrane distillation:Recent developments and perspectives[J]. Desalination, 2015, 356:56-84. [4]Liu D, Yusufu K, Yu F, et al. Quasi-critical condition to balance the scaling and membrane lifespan tradeoff in hypersaline water concentration[J]. Water Res, 2023, 242:120265. [5]ChenY, Wang Z, Jennings G K, et al. Probing pore wetting in membrane distillation using impedance:Early detection and mechanism of surfactant-induced wetting[J]. Environ Sci Technol Lett, 2017, 4(11):505-510. [6]Li C, Li X, Du X, et al. Elucidating the trade-off between membrane wetting resistance and water vapor flux in membrane distillation[J]. Environ Sci Technol, 2020, 54(16):10333-10341. [7]Wang Z, Chen Y, Sun X, et al. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant[J]. J Membr Sci, 2018, 559:183-195. [8]Wong P W, Jia M, Boey M W, et al. Evaluating and predicting surfactant-induced hydrophilization of pore channels in membrane distillation[J]. J Membr Sci, 2024, 691:122242. [9]Christie K S S, Yin Y, Lin S, et al. Distinct behaviors between gypsum and silica scaling in membrane distillation[J]. Environ Sci Technol, 2020, 54(1):568-576. [10]Xiang W, Han M, Dong T, et al. Fouling dynamics of anion polyacrylamide on anion exchange membrane in electrodialysis[J]. Desalination, 2021, 507(1):115036. [11]Zhang N, Halali M A, De Lannoy C F. Detection of fouling on electrically conductive membranes by electrical impedance spectroscopy[J]. Sep Purif Technol, 2020, 242:116823. [12]Vadhva P, Hu J, Johnson M J, et al. Electrochemical impedance spectroscopy for all-solid-state batteries:Theory, methods and future outlook[J]. Chem Electro Chem, 2021, 8(11):1930-1947. [13]Nghiem L D, Cath T. A scaling mitigation approach during direct contact membrane distillation[J]. Sep Purif Technol, 2011, 80(2):315-322. [14]Xie S, Li Z, Wong N H, et al. Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation[J]. J Membr Sci, 2022, 648:120297. [15]Scott S, Galeczka I M, Gunnarsson I, et al. Silica polymerization and nanocolloid nucleation and growth kinetics in aqueous solutions[J]. Geochim Cosmochim Acta, 2024, 371: 78-94. [16]Zhang Y P, Xue D F. In-situ micro-raman spectroscopy study of gypsum crystallization driven by chemical reaction[J]. J Mol Struct, 2020, 1210:128043. [17]Vora A, Ali S. Prolonged hypercalcemia from antibiotic-eluting calcium sulfate beads[J]. AACE clinical case reports, 2019, 5(6):349-351. [18]Christenson H K. Two-step crystal nucleation via capillary condensation[J]. Crystengcomm, 2013, 15(11):2030-2039. [19]Choi Y, Jang Y, Lee S. Prediction of silica fouling using mathematical model and artificial neural network in a direct contact membrane distillation[J]. Desalin. Water Treat, 2017, 90:16-22. [20]Zhang W, Blackburn R S, Dehghani-Sanij A A. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites[J]. Scripta Mater, 2007, 56(7): 581-584. [21]Antony A, Chilcott T, Coster H, et al. In situ structural and functional characterization of reverse osmosis membranes using electrical impedance spectroscopy[J]. J. Membr. Sci, 2013, 425-426:89-97. [22]Dornbusch D A, Hilton R, Gordan M J, et al. Effects of sonication on EIS results for zinc alkaline batteries[J]. ECS Electrochem Lett, 2013, 2(9): 89-92. [23]Mallikarjun A, Siva Kumar J, Sreekanth T, et al. Facile fabrication of NiO doped PVDF-co-HFP/Mg(ClO4)2 polymer composite membrane as a counter electrode in low-cost dye-sensitized solar cells[J]. Polym-Plast Tech Mater, 2022, 62(2):145-161. [24]Tomas M, Remis T, Gholami F. The determination of effective diffusion coefficient from the electrochemical impedance spectra of composite poly (vinyl alcohol) membranes[J]. Environ Prog Sustain Energy, 2019, 38(5):13195. [25]Liu J, Yu Y, Chen S, et al. Electrochemical analysis of ion-exchange membranes fouling during electrodialysis treatment of real shale gas flowback water[J]. J Membr Sci, 2024, 706:122954. [26]Yin Y, Wang W, Kota A K, et al. Elucidating mechanisms of silica scaling in membrane distillation:Effects of membrane surface wettability[J]. Environ Sci-Wat Res Technol, 2019, 5(11):2004-2014. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号