高碘酸钠促进PG/PEI共沉积改性中空纤维曝气膜性能优化及稳定性研究 |
作者:李一心, 周军浩, 刘子强, 吴强, 王暄, 吕晓龙, 张萌萌, 胡皓楠 |
单位: 天津工业大学 材料科学与工程学院, 先进分离膜材料全国重点实验室, 生物化工研究所, 天津 300387 |
关键词: 膜曝气生物膜反应器; 疏水膜; 邻苯三酚; 聚乙烯亚胺; 共沉积; 高碘酸钠 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.018 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(3):170-178 |
摘要: |
膜曝气生物膜反应器(MABR)在废水处理中具有高效率、低成本和环境友好等优势,而膜材料作为MABR系统的核心部分,须具备优异的氧传质性能和稳定性。针对MABR研究中疏水性聚偏氟乙烯(PVDF)微孔膜在氧传质性能方面的不足以及稳定性较差等问题,本研究采用邻苯三酚(PG)和聚乙烯亚胺(PEI)体系对自制PVDF疏水性微孔膜进行表面共沉积改性,并引入高碘酸钠(SP)作为氧化剂。研究结果表明,改性膜较原膜亲水性提高,水接触角从89.7°下降到52.5°,泡点压力从8 kPa提升到66 kPa,氧转移系数从0.76×10-2 /min增加到1.47×10-2 /min(1.93倍),氧传质性能显著增强。此外,SP的引入显著缩短了共沉积时间并提高了改性膜稳定性,其中高盐环境下的稳定性能尤其优越。 |
The membrane aerated biofilm reactor (MABR) demonstrates high efficiency, cost-effectiveness, and environmental friendliness in wastewater treatment. As the core component of MABR systems, membrane materials require superior oxygen transfer performance and stability. To address the limitations of hydrophobic polyvinylidene fluoride (PVDF) microporous membranes in oxygen transfer efficiency and stability in existing MABR research, this study employed a surface co-deposition modification method using pyrogallol (PG) and polyethyleneimine (PEI) on self-made hydrophobic PVDF microporous membranes, with the introduction of sodium periodate (SP) as an oxidant. Results revealed that the modified membrane exhibited enhanced hydrophilicity compared to the original membrane, with the water contact angle decreasing from 89.7° to 52.5°, bubble point pressure increasing from 8 kPa to 66 kPa, and oxygen transfer coefficient rising from 0.76×10-2 /min to 1.47×10-2 /min (a 1.93-fold improvement), indicating significantly enhanced oxygen transfer performance. Furthermore, the addition of SP substantially reduced co-deposition time and improved membrane stability. Under ultrasonic treatment and in strong acid, neutral, strong alkaline, and high-salt solutions, the oxygen transfer performance decay rates of modified membranes without SP were 14.9%, 13.0%, 3.2%, 26.0%, and 24.7%, respectively. With SP addition, these decay rates decreased to 11.6%, 2.0%, 0.7%, 16.3%, and 3.4%, respectively, demonstrating improved stability across all conditions, with particularly superior performance in high-salt environments. |
基金项目: |
国家自然科学基金项目(51978466); 天津市科技计划项目(21ZYJDJC00050) |
作者简介: |
李一心(2000-),男,甘肃庆阳人,从事疏水性PVDF膜表面改性及MABR应用研究 |
参考文献: |
[1]包进锋, 朱品尚, 朱圆圆,等. 膜曝气生物膜反应器膜传氧速率的影响因素研究[J]. 膜科学与技术, 2023, 43(2): 123-127,149. [2]袁晓彤, 郭东岳, 王暄,等. 氧化剂高碘酸钠诱发多巴胺自聚合在MBfR膜表面改性中的应用[J]. 膜科学与技术, 2017, 37(5): 36-41. [3]张杨, 李庭刚, 强志民,等. 膜曝气生物膜反应器研究进展[J]. 环境科学学报, 2011, 31(6): 1133-1143. [4]张利娟, 温琦, 王暄,等. 膜表面改性技术在MBfR领域的应用[J]. 水处理技术, 2015, 41(8): 31-35. [5]Hu Q B, Luo Y C. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications[J]. Carbohydrate Polym, 2016, 151: 624-639. [6]He Q, Shi B, Yao K. Interactions of gallotannins with proteins, amino acids, phospholipids and sugars[J]. Food Chem, 2006, 95(2): 250-254. [7]Ma W J, Ding Y C, Zhang M J, et al. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation[J]. J Hazard Mater, 2020, 384: 121476. [8]Jeon J R, Kim J H, Chang Y S. Enzymatic polymerization of plant-derived phenols for material-independent and multifunctional coating[J]. J Mater Chem B, 2013, 1(47): 6501-6509. [9]Xu L Q, Neoh K G, Kang E T. Natural polyphenols as versatile platforms for material engineering and surface functionalization[J]. Prog Polym Sci, 2018, 87: 165-196. [10]Yu H, Zhong Q Z, Liu T G, et al. Surface deposition of juglone/FeIII on microporous membranes for oil/water separation and dye adsorption[J]. Langmuir, 2019, 35(10): 3643-3650. [11]Li J, Sun Y N, Yang X D, et al. Iron-based oxides anchored on the catechol/silane-coated polypropylene nonwoven fabrics for effective removal of anionic dyes[J]. Acs Appl Polym Mater, 2024, 6(10): 6150-6161. [12]Xie H, Shen L, Xu Y, et al. Tannic acid (TA)-based coating modified membrane enhanced by successive inkjet printing of Fe3+ and sodium periodate (SP) for efficient oil-water separation[J].J Membr Sci, 2022, 660: 120873. [13]Jiang B, Cheng K, Zhang N, et al. One-step modification of PVDF membrane with tannin-inspired highly hydrophilic and underwater superoleophobic coating for effective oil-in-water emulsion separation[J]. Sep Purif Technol, 2021, 255: 117724. [14]Chen Y, Liu Q J. Oxidant-induced plant phenol surface chemistry for multifunctional coatings: Mechanism and potential applications[J]. J Membr Sci, 2019, 570: 176-183. [15]吕晓龙. 中空纤维多孔膜性能评价方法探讨[J]. 膜科学与技术, 2011, 31(2): 1-6. [16]Yang H C, Zhong W, Hou J, et al. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation[J]. J Membr Sci, 2017, 523: 1-7. [17]吴强, 周军浩, 李一心,等. 具有坚固孔隙结构的超疏水纳米纤维膜设计用于膜蒸馏[J].膜科学与技术, 2024, 44(1): 63-70. [18]Yang X B, Yuan L C, Zhao Y Y, et al. Mussel-inspired structure evolution customizing membrane interface hydrophilization[J]. J Membr Sci, 2020, 612: 118471. [19]Liu R R, Chen Q, Cao M Y, et al. Robust bio-inspired superhydrophilic and underwater superoleophobic membranes for simultaneously fast water and oil recovery[J]. J Membr Sci, 2021, 623: 119041. [20]Wang A Q, Fang W X, Zhang J Y, et al. Zwitterionic nanohydrogels-decorated microporous membrane with ultrasensitive salt responsiveness for controlled water transport[J]. Small, 2020, 16(9),:1903925. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号