电催化膜技术处理有机废水的研究进展 |
作者:陈朋利1,2, 李杰3, 古其林4,5, 吴海锁1, 吴伟1, 孙世鹏4,5 |
单位: 1. 江苏环保产业技术研究院股份公司, 南京 210019; 2. 南京信息工程大学 环境科学与工程学院, 南京 210044; 3. 河海大学 环境学院 浅水湖泊综合治理与资源开发教育部重点实验室, 南京 210098; 4. 南京工业大学 苏州未来膜技术创新中心, 苏州 215300; 5. 南京工业大学 化工学院 国家特种分离膜工程技术研究中心 材料化学工程国家重点实验室, 南京 211816 |
关键词: 电催化膜; 有机废水; 作用机理; 能耗分析; 强化过程 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.019 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(3):179-188 |
摘要: |
电催化膜技术结合了膜分离与电催化氧化的双重优势,在去除废水中有机污染物方面展现了巨大的应用潜力。相较于传统处理工艺,电催化膜通过直接氧化和间接氧化机制,能够高效降解和深度矿化废水中的有机污染物,同时显著缓解膜污染,从而提升膜系统整体效能。本文基于国内外研究进展,系统阐述了电催化阳极膜材料、作用机理、应用性能及其强化策略。针对现存技术瓶颈,提出了若干未来研究方向与应用建议,旨在推动电催化膜技术的工业化发展,为复杂有机废水的高效治理提供理论支持与实践指导。 |
Electro-catalytic membrane technology combines the dual advantages of membrane separation and electrocatalytic oxidation, demonstrating immense potential for organic pollutant removal in wastewater treatment. Compared to conventional processes, electro-catalytic membrane technology enables efficient degradation and deep mineralization of organic contaminants through both direct oxidation and indirect oxidation mechanisms. Simultaneously, it significantly mitigates membrane fouling. Based on recent domestic and international research progress, this paper systematically examines electro-catalytic membrane materials, operational mechanisms, application performance, and optimization strategies. Finally, we propose future research directions and practical recommendations. These aim to advance industrial-scale implementation of electro-catalytic membrane technology and provide theoretical and operational guidance for effective treatment of complex organic wastewater. |
基金项目: |
江苏省基础研究计划自然科学基金青年基金项目(BK20220215); 江苏省创新能力建设计划——江苏省技术创新中心课题资助(BM2021804) |
作者简介: |
陈朋利(1989-),男,河南郑州人,博士研究生,高级工程师,主要从事水处理膜材料与技术研发和应用 |
参考文献: |
[1]王远远, 王 仪, 黄思怡, 等. 高盐有机废水超滤处理的膜污染机制和分离效果研究[J]. 膜科学与技术, 2024, 44(6): 26-36. [2]Larocque M J, Gelb A, Latulippe D R, et al. Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance[J]. Sep Purif Technol, 2022, 287: 120482. [3]Liu Y, Liu F, Ding N, et al. Recent advances on electroactive CNT-based membranes for environmental applications: The perfect match of electrochemistry and membrane separation[J]. Chin Chem Lett, 2020, 31: 2539-2548. [4]Chaplin B P. Critical review of electrochemical advanced oxidation processes for water treatment applications[J]. Environ Sci-Proc Imp, 2014, 16: 1182-1203. [5]Guo L, Jing Y, Chaplin B P. Development and characterization of ultrafiltration TiO2 Magnéli phase reactive electrochemical membranes[J]. Environ Sci Technol, 2016, 50: 1428-1436. [6]Gayen P, Spataro J, Avasarala S, et al. Electrocatalytic reduction of nitrate using magnéli phase TiO2 reactive electrochemical membranes doped with Pd-based catalysts[J]. Environ Sci Technol, 2018, 52: 9370-9379. [7]Wang H, Guan Q, Li J, et al. Phenolic wastewater treatment by an electrocatalytic membrane reactor[J]. Catal Today, 2014, 236: 121-126. [8]Geng P, Chen G. Magnéli Ti4O7 modified ceramic membrane for electrically-assisted filtration with antifouling property[J]. J Membr Sci, 2016, 498: 302-314. [9]Skolotneva E, Kislyi A, Klevtsova A, et al. Mathematical modeling of the anodic oxidation of organic pollutants: A review[J]. Environ Chem Lett, 2024, 22(3): 1521-1561. [10]Panizza M. Importance of electrode material in the electrochemical treatment of wastewater containing organic pollutants [M]//New York: Springer, 2010. [11]Li X, Shao S, Yang Y, et al. Engineering Interface with a one-dimensional RuO2/TiO2 heteronanostructure in an electrocatalytic membrane electrode: Toward highly efficient micropollutant decomposition[J]. ACS Appl Mater Interfaces, 2020, 12(19): 21596-21604. [12]An H, Park W, Shin H, et al. Recommended practice for measurement and evaluation of oxygen evolution reaction electrocatalysis[J]. EcoMat, 2024, 6(10): 12486. [13]Gunaslan S, Fil B A, Yilmaz A E. Turbidity removal by electrooxidation from pistachio processing wastewater using Ti/Pt anodes[J]. J Chem Soc Pak, 2024, 46(1): 1. [14]Chen S, Li J, Liu L, et al. Fabrication of Co/Pr co-doped Ti/PbO2 anode for efficiently electrocatalytic degradation of β-naphthoxyacetic acid[J]. Chemosphere, 2020, 256: 127139. [15]Li X, Xu H, Yan W, et al. Electrocatalytic degradation of aniline by Ti/Sb-SnO2, Ti/Sb-SnO2/Pb3O4 and Ti/Sb-SnO2/PbO2 anodes in different electrolytes[J]. J Electroanal Chem, 2016, 775: 43-51. [16]Bi Q, Zhang Z, Sun Y, et al. Preparation and performance of highly active and long-life mesopore Ti/SnO2-Sb electrodes for electrochemical degradation of phenol[J]. J Alloy Compd, 2021, 889: 161657-161669. [17]Asim S, Zhu Y, Rana M, et al. Nanostructured 3D-porous graphene hydrogel based Ti/Sb-SnO2-Gr electrode with enhanced electrocatalytic activity[J]. Chemosphere, 2017, 169: 651-659. [18]Lin H, Niu J, Liang S, et al. Development of macroporous Magnéli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly-and perfluoroalkyl substances[J]. Chem Eng J, 2018, 354: 1058-1067. [19]Yang K, Lin H, Feng X, et al. Energy-efficient removal of trace antibiotics from low-conductivity water using a Ti4O7 reactive electrochemical ceramic membrane: Matrix effects and implications for byproduct formation[J]. Water Res, 2022, 224: 119047. [20]Yang K, Yin J, Zhu T, et al. Effect of boron-doped diamond anode electrode pretreatment on UF membrane fouling mitigation in a cross-flow filtration process[J]. Sep Purif Technol, 2021, 259: 118110. [21]Bejan D, Guinea E, Bunce N J. On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex anodes[J]. Electrochim Acta, 2012, 69: 275-281. [22]Martinez B V, Odier H, Coetsier C, et al. Recent advances in sub-stoichiometric TiO2 as reactive electrochemical membranes (REM) for bio-refractory pollutants removal: A critical review[J]. J Environ Chem Eng, 2023, 11(3): 110203. [23]Kumari P, Bahadur N, Cretin M, et al. Electro-catalytic membrane reactors for the degradation of organic pollutants - A review[J]. React Chem Eng, 2021, 6: 1508-1526. [24]Barbhuiya N H, Misra U, Singh S P. Synthesis, fabrication, and mechanism of action of electrically conductive membranes: A review[J]. Environ Sci-Wat Res, 2021, 7(4): 671-705. [25]Pan Z, Yu F, Li L, et al. Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding[J]. Chem Eng J, 2020, 385: 123928. [26]熊鸽, 王虹, 惠洪森, 等. 活性炭基微孔炭膜制备及电化学性能[J]. 膜科学与技术, 2019, 39(5): 37-44,57. [27]Liu F, Liu Y, Shen C, et al. One-step phosphite removal by an electroactive CNT filter functionalized with TiO2/CeOx nanocomposites[J]. Sci Total Environ, 2020, 710: 135514. [28]Li P, Yang C, Sun F, et al. Fabrication of conductive ceramic membranes for electrically assisted fouling control during membrane filtration for wastewater treatment[J]. Chemosphere, 2021, 280: 130794. [29]Sutherland A J, Ruiz-Caldas M X, de Lannoy C F. Electro-catalytic microfiltration membranes electrochemically degrade azo dyes in solution[J]. J Membr Sci, 2020, 611: 118335. [30]Ma Q, Gao J, Cheng K, et al. Electrooxidation of perfluorocarboxylic acids by an interfacially engineered Magnéli phase titanium oxide (Ti4O7) electrode with MXene[J]. ACS EST Engg, 2024, 4(5): 1102-1112. [31]Zhou X, Liu S, Xu A, et al. A multi-walled carbon nanotube electrode based on porous Graphite-RuO2 in electrochemical filter for pyrrole degradation[J]. Chem Eng J, 2017, 330: 956-964. [32]Ran W, Zhao H, Zhang X, et al. Critical review of Pd-catalyzed reduction process for treatment of waterborne pollutants[J]. Environ Sci Technol, 2024, 58(7): 3079-3097. [33]Huang D, Wang K, Niu J, et al. Amorphous Pd-loaded Ti4O7 electrode for direct anodic destruction of perfluorooctanoic acid[J]. Environ Sci Technol, 2020, 54(17): 10954-10963. [34]Yu J, Wang J, Yu H, et al. Development of Ti4O7 reactive electrochemical membrane and electrochemical oxidation of naphthols in aqueous solution[J]. Process Saf Environ Prot, 2024, 182: 497-508. [35]Zhi D, Zhang J, Wang J, et al. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes[J]. J Environ Manag, 2020, 265: 110571. [36]Wang L, Wang Y, Sui Y, et al. Formation of chlorate and perchlorate during electrochemical oxidation by Magnéli phase Ti4O7 anode: Inhibitory effects of coexisting constituents[J]. Sci Rep, 2022, 12(1): 15880. [37]Kim J, Lee J, Lee S, et al. Electrically conductive membrane for fouling control: Its mechanisms and applications[J]. Desalination, 2024, 578: 117445. [38]Li N, Wang W, Ma C, et al. A novel conductive rGO/ZnO/PSF membrane with superior water flux for electrocatalytic degradation of organic pollutants[J]. J Membr Sci, 2022, 641: 119901. [39]Kim J, Yun E-T, Tijing L, et al. Mitigation of fouling and wetting in membrane distillation by electrical repulsion using a multi-layered single-wall carbon nanotube/polyvinylidene fluoride membrane[J]. J Membr Sci, 2022, 653: 120519. [40]Liu L, Li K, Zhao S, et al. The effects of electrophoresis, bubbles and electroosmosis for conductive membrane performance in the electro-filtration process[J]. J Membr Sci, 2021, 620: 118955. [41]Rao U, Iddya A, Jung B, et al. Mineral scale prevention on electrically conducting membrane distillation membranes using induced electrophoretic mixing[J]. Environ Sci Technol, 2020, 54(6): 3678-3690. [42]Zhang Z, Huang G, Li Y, et al. Electrically conductive inorganic membranes: A review on principles, characteristics and applications[J]. Chem Eng J, 2022, 427: 131987. [43]Karkooti A, Rastgar M, Nazemifard N, et al. Graphene-based electro-conductive anti-fouling membranes for the treatment of oil sands produced water[J]. Sci Total Environ, 2020, 704: 135365. [44]Sun M, Wang X, Winter L R, et al. Electrified membranes for water treatment applications[J]. ACS EST Engg, 2021, 1(4): 725-752. [45]Malekabadi F K, Yousefi F, Karimi R, et al. Electrocatalytic membrane containing CuFeO2 nanoporous carbon for organic dye removal application[J]. Chem Eng Res Des, 2022, 183: 345-356. [46]Peng Y, Yan Y, Ma X, et al. Efficient electrochemical oxidation of antibiotic wastewater using a graphene-loaded PbO2 membrane anode: Mechanisms and applications[J]. Environ Res, 2024, 259: 119517. [47]Yin X, Li W, Zhu H, et al. Electrochemical oxidation of bio-treated landfill leachate using a novel dynamic reactive electrochemical membrane (DREM)[J]. J Hazard Mater, 2023, 446: 130745. [48]Yin Z, Zhang K, Ma N, et al. Catalytic membrane electrode with Co3O4 nanoarrays for simultaneous recovery of water and generation of hydrogen from wastewater[J]. SCMs, 2023, 66(2): 651-663. [49]Lin H, Peng H, Feng X, et al. Energy-efficient for advanced oxidation of bio-treated landfill leachate effluent by reactive electrochemical membranes (REMs): Laboratory and pilot scale studies[J]. Water Res, 2021, 190: 116790. [50]Yin X, Li W, Zhu H, et al. Electrochemical treatment of municipal reverse osmosis concentrates by a TiO2-BNTs/SnO2-Sb reactive electrochemical membrane[J]. Sep Purif Technol, 2024, 331: 125726. [51]Ren L, Li Y, Guo Y, et al. Electrochemical oxidation of reverse osmosis concentrate using a pilot-scale reactive electrochemical membrane filtration system: Performance and mechanisms[J]. J Hazard Mater, 2024, 465: 133315. [52]Qaseem S, Dlamini D S, Zikalala S A, et al. Electro-catalytic membrane anode for dye removal from wastewater[J].Colloid Surface A,2020, 603: 125270. [53]Li W, Xiao R, Xu J, et al. Interface engineering strategy of a Ti4O7 ceramic membrane via graphene oxide nanoparticles toward efficient electrooxidation of 1,4-dioxane[J]. Water Res, 2022, 216: 118287. [54]Ganzenko O, Sistat P, Trellu C, et al. Reactive electrochemical membrane for the elimination of carbamazepine in secondary effluent from wastewater treatment plant[J]. Chem Eng J, 2021, 419: 129467. [55]Wang W, Wang J, Wang J, et al. Enhanced treatment of p-nitrophenol and coking wastewater through electrochemical and electrochemical-ozonation coupling process utilizing a novel Ti4O7 reactive electrochemical membrane anode[J]. J Environ Chem Eng, 2024, 12(3): 112549. [56]Ma Q, Gao J, Potts C, et al. Electrochemical aging and halogen oxides formation on multiwalled carbon nanotubes and Fe3O4@g-C3N4 coated conductive membranes[J]. Ind Eng Chem Res, 2022, 61: 14260-14271. [57]Yang C, Shang S, Li X-y J J o H M. Oxygen-vacancy-enriched substrate-less SnOx/La-Sb anode for high-performance electrocatalytic oxidation of antibiotics in wastewater[J]. J Hazard Mater, 2022, 436: 129212. [58]Di Y, Gu Z, Kang Y, et al. Enhanced oxidation of organic pollutants by regulating the interior reaction region of reactive electrochemical membranes[J]. J Hazard Mater, 2024, 466: 133584. [59]Barrera-Díaz C, Canizares P, Fernández F, et al. Electrochemical advanced oxidation processes: An overview of the current applications to actual industrial effluents[J]. J Mex Chem Soc, 2014, 58(3): 256-275. [60]Zeng W, Liang H, Zhang H, et al. Efficient electrochemical oxidation of sulfamethoxazole by a novel reduced TiO2 nanotube arrays-based flow-through electrocatalytic membrane[J]. Sep Purif Technol, 2022, 289: 120720. [61]Zambrano J, Min B. Comparison on efficiency of electrochemical phenol oxidation in two different supporting electrolytes (NaCl and Na2SO4) using Pt/Ti electrode[J]. Environ Technol Inno, 2019, 15: 100382. [62]Zhong C, Wei K, Han W, et al. Electrochemical degradation of tricyclazole in aqueous solution using Ti/SnO2-Sb/PbO2 anode[J]. J Electroanal Chem, 2013, 705: 68-74. [63]Wu W, Huang Z H, Lim T T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water[J]. Appl Catal, A, 2014, 480: 58-78. [64]Aquino J M, Rocha-Filho R C, Ruotolo L A, et al. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA anodes[J]. Chem Eng J, 2014, 251: 138-145. [65]Tang J, Zhang C, Quan B, et al. Electrocoagulation coupled with conductive ceramic membrane filtration for wastewater treatment: Toward membrane modification, characterization, and application[J]. Water Res, 2022, 220: 118612. [66]Xu J, Liu Y, Li D, et al. Electrochemical activation of peroxymonosulfate by 3D printed blue TiO2 nanotube arrays reactive electrochemical membrane for efficient degradation of acetaminophen[J]. J Environ Chem Eng, 2023, 11(3): 109602. [67]Yu S, Zhang R, Dang Y, et al. Electrochemical activation of peroxymonosulfate at Ti/La2O3-PbO2 anode to enhance the degradation of typical antibiotic wastewater[J]. Sep Purif Technol, 2022, 294: 121164. [68]Skolotneva E, Cretin M, Mareev S J M. A simple 1D convection-diffusion model of oxalic acid oxidation using reactive electrochemical membrane[J]. Membranes, 2021, 11(6): 431. [69]Teng J, You S, Ma F, et al. Enhanced electrochemical decontamination and water permeation of titanium suboxide reactive electrochemical membrane based on sonoelectrochemistry[J]. Ultrason Sonochem, 2020, 69: 105248. [70]Li H, Zhao K, Zhang X, et al. Electrochemical anodic oxidation-based membrane system for micropollutant removal[J]. ACS EST Engg, 2024, 4(2): 224-249. [71]Xu Y, Chen Y, Sun M, et al. A dual flow-through electrochemical system coupled electrocatalytic membrane electrode and heterogeneous electro-Fenton for organic wastewater treatment[J]. J Environ Chem Eng, 2024, 12(3): 112788. [72]Li N, Lu X, He M, et al. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review[J]. J Hazard Mater, 2021, 414: 125478. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号