有机溶剂纳滤薄层纳米复合膜的最新研究进展 |
作者:李兴祥, 阎明政, 王宪实, 马军, 周宗尧 |
单位: 哈尔滨工业大学 环境学院, 哈尔滨 150090 |
关键词: 有机溶剂纳滤(OSN); 薄层纳米复合膜(TFN); 膜分离; 纳米材料 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.020 |
分类号: TQ028; O631; TB34; TB43 |
出版年,卷(期):页码: 2025,45(3):189-200 |
摘要: |
随着石油化工、制药和食品工业对有机溶剂分离与回收需求的日益增加,有机溶剂纳滤(OSN)技术因其在该领域的显著优势而受到广泛关注。尽管如此,传统OSN膜的性能受限于“选择性-渗透性”权衡效应,在一定程度上制约了其分离效果。为了克服该瓶颈,研究人员将纳米材料掺入薄层复合膜(TFC)膜制备过程中,开发了一系列用于有机溶剂纳滤的薄层纳米复合膜(TFN-OSN),以提升分离膜在有机体系分离中的性能表现。本文总结了近年来TFN-OSN膜的研究进展,详细介绍了TFN-OSN膜的制备方法,综合评述了各类TFN-OSN膜的性能和应用潜力,为设计和制备高性能的TFN-OSN膜提供科学指导与思路借鉴。 |
The demand for organic solvent separation and recovery in the petrochemical, pharmaceutical, and food industries is rapidly increasing. Organic solvent nanofiltration (OSN) has garnered significant attention due to its notable advantages in this field. However, the performance of conventional OSN membranes is limited by the “selectivity-permeability” trade-off effect, which restricts their separation efficiency. Researchers have incorporated nanomaterials into the fabrication process of thin-film composite (TFC) membranes to overcome this bottleneck, developing a series of thin-film nanocomposite (TFN) membranes for organic solvent nanofiltration. This work aims to update the recent progress in TFN-OSN membranes, providing detailed descriptions of the preparation methods for TFN-OSN membranes. It offers a thorough review of the performance and application potential of various types of TFN-OSN membranes. The objective of this review is to provide scientific guidance and ideas for the design and preparation of high-performance TFN-OSN membranes. |
基金项目: |
承德国家可持续发展议程创新示范区建设科技专项项目(202202F003) |
作者简介: |
李兴祥(2000-),男,云南昭通人,硕士研究生,主要研究方向为有机纳滤膜的开发与应用 |
参考文献: |
[1]Vandezande P, Gevers L E M, Vankelecom I F J. Solvent resistant nanofiltration: Separating on a molecular level[J]. Chem Soc Rev, 2008, 37(2): 365-405. [2]Huang T, Moosa B A, Hoang P, et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration[J]. Nat Commun, 2020, 11(1): 5882. [3]Shi G M, Feng Y, Li B, et al. Recent progress of organic solvent nanofiltration membranes[J]. Prog Polym Sci, 2021, 123: 101470. [4]Marchetti P, Jimenez Solomon M F, Szekely G, et al. Molecular separation with organic solvent nanofiltration: A critical review[J]. Chem Rev, 2014, 114(21): 10735-10806. [5]Szekely G, Jimenez-Solomon M F, Marchetti P, et al. Sustainability assessment of organic solvent nanofiltration: From fabrication to application[J]. Green Chem, 2014, 16(10): 4440-4473. [6]Yao Q, Li S, Zhang R, et al. High-throughput thin-film composite membrane via interfacial polymerization using monomers of ultra-low concentration on tannic acid - Copper interlayer for organic solvent nanofiltration[J]. Sep Purif Technol, 2021, 258: 118027. [7]Yang Z, Guo H, Tang C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. J Membr Sci, 2019, 590: 117297. [8]Li S, Li C, Song X, et al. Graphene quantum dots-doped thin film nanocomposite polyimide membranes with enhanced solvent resistance for solvent-resistant nanofiltration[J]. ACS Appl Mater Interfaces, 2019, 11(6): 6527-6540. [9]Wei S, Xie Y, Xing Y, et al. Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation[J]. J Membr Sci, 2019, 582: 414-422. [10]Ali S, Shah I A, Ihsanullah I, et al. Nanocomposite membranes for organic solvent nanofiltration: Recent advances, challenges, and prospects[J]. Chemosphere, 2022, 308: 136329. [11]Hermans S, Marièn H, Van Goethem C, et al. Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration[J]. Curr Opin Chem Eng, 2015, 8: 45-54. [12]Hermans S, Bernstein R, Volodin A, et al. Study of synthesis parameters and active layer morphology of interfacially polymerized polyamide-polysulfone membranes[J]. React Funct Polym, 2015, 86: 199-208. [13]Liu F, Wang L, Li D, et al. A review: The effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification[J]. RSC Adv, 2019, 9(61): 35417-35428. [14]Wang L, Deng K, Zhang M, et al. Robust carbon nitride nanosheet interlayered thin-film nanocomposite membrane for enhanced organic solvent nanofiltration[J]. Sep Purif Technol, 2025, 359: 130485. [15]Paseta L, Luque-Alled J M, Malankowska M, et al. Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration[J]. Sep Purif Technol, 2020, 247: 116995. [16]Hao L, Zhang H, Wu X, et al. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport[J]. Composites Part A, 2017, 100: 139-149. [17]Su J, Lyu X, Li S, et al. High separation performance thin film composite and thin film nanocomposite hollow fiber membranes via interfacial polymerization for organic solvent nanofiltration[J]. Sep Purif Technol, 2021, 278: 119567. [18]Peyravi M, Jahanshahi M, Rahimpour A, et al. Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration[J]. Chem Eng J, 2014, 241: 155-166. [19]Shen Q, Lin Y, Zhang P, et al. Development of ultrathin polyamide nanofilm with enhanced inner-pore interconnectivity via graphene quantum dots-assembly intercalation for high-performance organic solvent nanofiltration[J]. J Membr Sci, 2021, 635: 119498. [20]Gnani Peer Mohamed S I, Nejati S, Bavarian M. All-polymeric thin-film nanocomposite membrane for organic solvent nanofiltration[J]. ACS Appl Polym Mater, 2021, 3(12): 6040-6044. [21]Li S, Du S, Liu S, et al. Ultra-smooth and ultra-thin polyamide thin film nanocomposite membranes incorporated with functionalized MoS2 nanosheets for high performance organic solvent nanofiltration[J]. Sep Purif Technol, 2022, 291: 120937. [22]He H, Xu P, Wang X, et al. Hollow porous carbon spheres (HPCSs) doped thin-film nanocomposite membrane for efficient organic solvent nanofiltration[J]. J Environ Chem Eng, 2023, 11(1): 109252. [23]Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches[J]. Water Res, 2015, 80: 306-324. [24]Chen Y, Sun H, Wang P, et al. Advanced reverse osmosis membranes prepared by counter-diffusion of organic phase monomers induced by polypyrrole additives[J]. Sep Purif Technol, 2024, 337: 126230. [25]Li S, Liu S, Su B, et al. Thin film nanocomposite polyamide membrane doped with amino-functionalized graphene quantum dots for organic solvent nanofiltration[J]. J Membr Sci, 2023, 685: 121960. [26]Zhao P, Li R, Wu W, et al. In-situ growth of polyvinylpyrrolidone modified ZrMOFs thin-film nanocomposite (TFN) for efficient dyes removal[J]. Composites Part B, 2019, 176: 107208. [27]Cheng X, Hua D, Cui F, et al. Design of thin-film nanocomposite membranes via synchronizing interfacial coordination and polymerization reactions for organic solvent nanofiltration[J]. Sep Purif Technol, 2024, 332: 125747. [28]Zhou Z, Hu Y, Boo C, et al. High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer[J]. Environ Sci Technol Lett, 2018, 5(5): 243-248. [29]Dai R, Li J, Wang Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review[J]. Adv Colloid Interface Sci, 2020, 282: 102204. [30]Deng L, Gonzales R R, Fu W, et al. Carbon nanotubes regulated polyamide membrane by intercalation to improve the organic solvent nanofiltration performance[J]. Carbon, 2024, 216: 118582. [31]Liu G, Jin W, Xu N. Two-dimensional-material membranes: A mew family of high-performance separation membranes[J]. Angew Chem Int Ed, 2016, 55(43): 13384-13397. [32]Wang Z, Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environ Sci Technol, 2017, 51(15): 8229-8244. [33]Yang C, Li S, Lv X, et al. Effectively regulating interfacial polymerization process via in-situ constructed 2D COFs interlayer for fabricating organic solvent nanofiltration membranes[J]. J Membr Sci, 2021, 637: 119618. [34]Wang L, Zhang M, Shu Y, et al. Covalently modified MoS2 for the fabrication of interlayered thin film composite membranes with excellent structural stability against swelling and drying in organic solvent nanofiltration[J]. J Membr Sci, 2024, 707: 122985. [35]Navarro M, Benito J, Paseta L, et al. Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir-Schaefer technique for nanofiltration[J]. ACS Appl Mater Interfaces, 2018, 10(1): 1278-1287. [36]Yang S, Li H, Zhang X, et al. Amine-functionalized ZIF-8 nanoparticles as interlayer for the improvement of the separation performance of organic solvent nanofiltration (OSN) membrane[J]. J Membr Sci, 2020, 614: 118433. [37]Ding S-Y, Wang W. Covalent organic frameworks (COFs): From design to applications[J]. Chem Soc Rev, 2013, 42(2): 548-568. [38]Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chem Soc Rev, 2012, 41(18):6010-6022. [39]Tan K T, Ghosh S, Wang Z, et al. Covalent organic frameworks[J]. Nat Rev Methods Primers, 2023, 3(1): 1. [40]Li C, Li S, Tian L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. J Membr Sci, 2019, 572: 520-531. [41]Zhao S, Zha Z, Mao C, et al. In-situ fabricated covalent organic frameworks-polyamide hybrid membrane for highly efficient molecular separation[J]. J Membr Sci, 2022, 653: 120544. [42]Gao X, Zou X, Ma H, et al. Highly selective and permeable porous organic framework membrane for CO2 capture[J]. Adv Mater, 2014, 26(22): 3644-3648. [43]Li S, Yang F, Liu S, et al. Effective regulating interfacial polymerization process of OSN membrane via in-situ constructed nano-porous interlayer of 2D TpHz covalent organic frameworks[J]. J Membr Sci, 2023, 665: 121101. [44]Yin Y, Liu S, Zhou J, et al. Polyamide thin film nanocomposite with in-situ co-constructed COFs for organic solvent nanofiltration[J]. J Membr Sci, 2023, 686: 122000. [45]Van Goethem C, Verbeke R, Pfanmller M, et al. The role of MOFs in thin-film nanocomposite (TFN) membranes[J]. J Membr Sci, 2018, 563: 938-948. [46]Jun B M, Al-Hamadani Y A J, Son A, et al. Applications of metal-organic framework based membranes in water purification: A review[J]. Sep Purif Technol, 2020, 247: 116947. [47]Zhao Y, Wu M, Guo Y, et al. Metal-organic framework based membranes for selective separation of target ions[J]. J Membr Sci, 2021, 634: 119407. [48]Shen J, Liu G, Han Y, et al. Artificial channels for confined mass transport at the sub-nanometre scale[J]. Nat Rev Mater, 2021, 6(4): 294-312. [49]Li Y, Zhu X, Liu B, et al. Boosted performance of thin-film nanocomposite membranes based on phytic acid functionalized ZrMOF for nanofiltration[J]. Desalination, 2025, 594: 118278. [50]Cheng X, Jiang X, Zhang Y, et al. Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents[J]. ACS Appl Mater Interfaces, 2017, 9(44): 38877-38886. [51]Sorribas S, Gorgojo P, Téllez C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. J Am Chem Soc, 2013, 135(40): 15201-15208. [52]Chen Y, Bai Y, Meng L, et al. Engineering nanocomposite metal-phenolic network membranes with hollow MOFs via in-situ etching for high-efficiency organic solvent nanofiltration[J]. Chem Eng J, 2022, 437: 135289. [53]Lu Z, Wei Y, Deng J, et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion[J]. ACS Nano, 2019, 13(9): 10535-10544. [54]Wei Y, Zhang P, Soomro R A, et al. Advances in the synthesis of 2D MXenes[J]. Adv Mater, 2021, 33(39): 2103148. [55]Li J, Li L, Xu Y, et al. MXene nanosheet stacks with tunable nanochannels for efficient molecular separation[J]. Chem Eng J, 2022, 427: 132070. [56]Zhang X, Ma Z, Zhao X, et al. Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes[J]. J Mater Chem A, 2015, 3(9): 4960-4966. [57]Wu X, Hao L, Zhang J, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J]. J Membr Sci, 2016, 515: 175-188. [58]Hao L, Chi Z, Chen Q, et al. Constructing large loadings of dual pathways with Ti3C2Tx-CDs in thin film nanocomposite membrane for enhanced organic permeation[J]. J Membr Sci, 2021, 620: 118872. [59]Le T, Chen X, Dong H, et al. An evolving insight into metal organic framework-functionalized membranes for water and wastewater treatment and resource recovery[J]. Ind Eng Chem Res, 2021, 60(19): 6869-6907. [60]Abadikhah H, Kalali E N, Behzadi S, et al. High flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltration[J]. Chem Eng Sci, 2019, 204: 99-109. [61]He H, Wang X, Xu P, et al. Flower-like MnO2 nanoparticles modified thin film nanocomposite membranes for efficient organic solvent nanofiltration[J]. Compos Commun, 2023, 38: 101515. [62]He H, Xu P, Wang D, et al. Polyoxometalate-modified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration[J]. Sep Purif Technol, 2022, 295: 121348. [63]Li Y, Mao H, Zhang H, et al. Tuning the microstructure and permeation property of thin film nanocomposite membrane by functionalized inorganic nanospheres for solvent resistant nanofiltration[J]. Sep Purif Technol, 2016, 165: 60-70. [64]Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Adv Mater, 2010, 22(35): 3906-3924. [65]Huang L, Li Y, Zhou Q, et al. Graphene oxide membranes with tunable semipermeability in organic solvents[J]. Adv Mater, 2015, 27(25): 3797-3802. [66]Hua D, Chung T-S. Polyelectrolyte functionalized lamellar graphene oxide membranes on polypropylene support for organic solvent nanofiltration[J]. Carbon, 2017, 122: 604-613. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号