有机溶剂反渗透膜的制备及性能研究 |
作者:杨倩, 彭宇, 王恩琳, 孙宇琪, 王冰, 高学理, 苏保卫 |
单位: 中国海洋大学 化学化工学院 海洋化学理论与工程技术教育部重点实验室, 青岛 266100 |
关键词: 有机溶剂反渗透膜; 界面聚合; 有机溶剂; 1-甲基咪唑 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.001 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(4):1-14 |
摘要: |
精馏等基于相变的有机溶剂分离纯化过程能耗约占总分离能耗的80%,亟待开发一种绿色、高效的有机溶剂分离技术。有机溶剂反渗透(OSRO)技术是一种面向有机溶剂体系分离的无相变低能耗新兴膜分离技术,应用前景广阔,但目前OSRO膜通量极低。以自制的交联聚酰亚胺膜为基膜,利用界面聚合法,通过在水相单体溶液中添加1-甲基咪唑制备了具有良好分离性能的OSRO膜。最优条件下制备的OSRO膜TFC1-MI-0.3在3.0 MPa下,对三种纯溶剂(甲醇、乙腈和乙醇)的渗透通量分别为28.9、15.8和4.6 kg/(m2·h);对质量分数5%甲基叔丁基醚(分子量88)/甲醇溶液中的甲基叔丁基醚和质量分数为5%正己烷(分子量86)/甲醇溶液中的正己烷的截留率均约92%,透过液中的甲醇质量分数均达到99.5%,可以实现具有共沸特性的二元有机溶剂混合体系的分离;且透过液的质量渗透通量分别达到19.4和20.1 kg/(m2·h),与不添加1-甲基咪唑的基准膜相比,在保持选择性相当的同时其渗透性能约提升1倍。该最优膜在乙醇溶液中的切割分子量约为121。该膜浸泡在烃类、醇类、酯类、酮类等不同的有机溶剂中30天后,对NaCl的截留率变化幅度均小于2%,具有很好的应用前景。 |
The energy consumption of organic solvent separation and purification processes based on phase transition, such as distillation, accounts for about 80% of the total separation energy consumption. There is an urgent need to develop a green and efficient organic solvent separation technology. Organic solvent reverse osmosis (OSRO) technology is an emerging low-energy, phase-change-free membrane separation technology for the separation of organic solvent systems. However, the current OSRO membranes still suffer from low solvent permeability, which greatly hinders their industrial application. In this work, 1-methylimidazole was used as additive in the aqueous monomer solution to manipulate the interfacial polymerization process on crosslinked polyimide substrate membrane surface so as to construct a kind of OSRO membrane with better permeability to organic solvent. The results showed that for the OSRO membrane TFC1-MI-0.3 prepared under optimal conditions, the pure solvent permeate fluxes were 28.9, 15.8 and 4.6 kg/(m2·h) for the three pure solvents (methanol, acetonitrile and ethanol) at 3.0 MPa, respectively. The rejection of MTBE (molecular weight 88) in 5% MTBE/methanol solution and n-hexane in 5% n-hexane (molecular weight 86)/methanol solution were about 92%. The methanol concentration of the permeates reached 99.5%, which could achieve the separation of binary organic mixed systems with azeotropic characteristics. The methanol mass permeation fluxes of TFC1MI0.3 reached 19.4 and 20.1 kg/(m2·h), respectively, for the two solutions, which were approximately doubled that of the baseline OSRO membrane without 1-methylimidazole addition during the interfacial polymerization process. The molecular weight cut-off of TFC1MI0.3 in ethanol solution was about 121. After immersing TFC1-MI-0.3 in various organic solvents such as hydrocarbons, alcohols, esters and ketones for 30 days, the rejection of the membrane for NaCl varied less than 2%, which demonstrated a good application prospect. |
基金项目: |
国家自然科学基金项目(22078310) |
作者简介: |
杨倩(2000-),女,山东菏泽人,硕士研究生,研究方向为有机溶剂反渗透膜分离技术 |
参考文献: |
[1]Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. [2]Lively R P, Sholl D S. From water to organics in membrane separations[J]. Nat Mater, 2017, 16(3): 276-279. [3]Dong G, Nagasawa H, Yu L, et al. Energy-efficient separation of organic liquids using organosilica membranes via a reverse osmosis route[J]. J Membr Sci, 2020, 597: 117758. [4]Sourirajan S. Separation of hydrocarbon liquids by flow under pressure through porous membranes[J]. Nature, 1964, 203(4952): 1348-1349. [5]Cadotte J E, King R S, Majerle R J, et al. Interfacial synthesis in the preparation of reverse osmosis membranes[J]. Macromol Sci Chem A, 1981, 15(5): 727-755. [6]Liu C, Takagi R, Shintani T, et al. Organic liquid mixture separation using an aliphatic polyketone-supported polyamide organic solvent reverse osmosis (OSRO) membrane[J]. ACS Appl Mater Interfaces, 2020, 12(6): 7586-7594. [7]Liu C, Takagi R, Saeki D, et al. Highly improved organic solvent reverse osmosis (OSRO) membrane for organic liquid mixture separation by simple heat treatment[J]. J Membr Sci, 2021, 618: 118710. [8]Kushida W, Gonzales R R, Shintani T, et al. Organic solvent mixture separation using fluorine-incorporated thin film composite reverse osmosis membrane[J]. J Mater Chem A, 2022, 10(8): 4146-4156. [9]Zhang A, Guan K, Mai Z, et al. Polar pore surface of polyamide membranes enabling efficient solvent mixture separation[J]. Adv Funct Mater, 2025, 35(23): 2422376. [10]Xu G, Chiao Y H, Fu W, et al. Temperature-modulated formation of polyamide layer for enhanced organic solvent reverse osmosis (OSRO) performance[J]. J Membr Sci, 2023, 682: 121793. [11]Deng L,Gonzales R R, Fu W, et al. Organic solvent separation using carbon nanotube-interlayered thin film composite membrane[J]. Chem Eng J, 2023, 473: 145197. [12]Guan K, Fang S, Zhou S, et al. Thin film composite membrane with improved permeance for reverse osmosis and organic solvent reverse osmosis[J]. J Membr Sci, 2023, 688: 122104. [13]Fu W, Hu M, Liu J, et al. Surface polarity modulation enables high-performance polyamide membranes for separation of polar/non-polar organic solvent mixtures[J]. J Membr Sci, 2024, 704: 122901. [14]Luo L H, Tong Y H, Jia R, et al. Thin-film nanocomposite membrane based on mineral silicate maifanite for organic solvent reverse osmosis[J]. Ind Eng Chem Res, 2023, 62(25): 9863-9875. [15]Ren Y, Ma H, Kim J, et al. Fluorine-rich poly(arylene amine) membranes for the separation of liquid aliphatic compounds[J]. Science, 2025, 387(6730): 208-214. [16]Abdulhamid M A, Hardian R, Szekely G. Carbon molecular sieve membranes with integrally skinned asymmetric structure for organic solvent nanofiltration (OSN) and organic solvent reverse osmosis (OSRO)[J]. Appl Mater Today, 2022, 28: 101541. [17]Liu C, Cheng L, Shintani T, et al. AF2400/polyketone composite organic solvent reverse osmosis membrane for organic liquid separation[J]. J Membr Sci, 2021, 628: 119270. [18]Jang H Y, Lively R P. The role of skin layer defects in organic solvent reverse osmosis membranes[J]. J Membr Sci Letters, 2021, 1(1): 100004. [19]Li M, Li J, Hao T, et al. Tailoring the pore size distribution of nanofiltration membranes via surfactants with different alkyl chain lengths: Towards efficient molecular separation[J]. Sep Purif Technol, 2024, 339: 126494. [20]Ang M B M Y, Tang C L, De Guzman M R, et al. Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment[J]. Desalination, 2020, 481: 114352. [21]Lin W T, Zhu C Y, Zhou D, et al. Functionalized g-C3N4 nanosheet interlayer enables enhanced separation performance of nanofiltration membranes[J]. Sep Purif Technol, 2023, 324: 124543. [22]Kamada T, Ohara T, Shintani T, et al. Optimizing the preparation of multi-layered polyamide membrane via the addition of a co-solvent[J]. J Membr Sci, 2014, 453: 489-497. [23]Kamada T, Ohara T, Shintani T, et al. Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux[J]. J Membr Sci, 2014, 467: 303-312. [24]Gan Q, Peng L E, Guo H, et al. Cosolvent-assisted interfacial polymerization toward regulating the morphology and performance of polyamide reverse osmosis membranes: Increased m-phenylenediamine solubility or enhanced interfacial vaporization?[J]. Environ Sci Technol, 2022, 56(14): 10308-10316. [25]Perera D H N, Song Q, Qiblawey H, et al. Regulating the aqueous phase monomer balance for flux improvement in polyamide thin film composite membranes[J]. J Membr Sci, 2015, 487: 74-82. [26]Liu Y, Dong X, Wang M, et al. Modulating interfacial polymerization via 1-methylimidazole as reactive additive for nanofiltration membrane with high-performance[J]. Desalination, 2023, 568: 117021. [27]Liu Y, Yan W, Wang Z, et al. 1-methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability[J]. J Membr Sci, 2020, 599: 117830. [28]Li C, Li S, Lyu L, et al. High solvent-resistant and integrally crosslinked polyimide-based composite membranes for organic solvent nanofiltration[J]. J Membr Sci, 2018, 564: 10-21. [29]Yan W, Liu L, Dong C, et al. Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance[J]. Desalination, 2021, 498: 114639. [30]Peng Y, Yag J, Qi H, et al. 2D COFs interlayer manipulated interfacial polymerization for fabricating high performance reverse osmosis membrane[J]. Sep Purif Technol, 2022, 303: 122198. [31]Jimenez Solomon M F, Bhole Y, Livingston A G. High flux membranes for organic solvent nanofiltration (OSN) - Interfacial polymerization with solvent activation[J]. J Membr Sci, 2012, 423/424: 371-382. [32]Chen K, Zhao S, Tian B, et al. Hydrophilic-hydrophobic bilayer interlayer for high performance thin-film composite reverse osmosis membranes[J]. J Membr Sci, 2023: 122177. [33]Fei Z, Jiang C, Li M, et al. Imidazole assisted molecular-scale regulation of polyamide for preparing reverse osmosis membrane with enhanced water permeance[J]. J Environ Chem Eng, 2022, 10(4): 108146. [34]郑凤王. 基于聚酰亚胺薄膜的综合实验项目设计[J]. 大学化学, 2022, 37(6): 2108037. [35]Dong Q, Wang E, Liu S, et al. Hollow fiber thin-film composite membrane regulated by macrocyclic polyamine molecules for high performance organic solvent nanofiltration[J]. J Membr Sci, 2024, 708: 123036. [36]Fife T H. Kinetic and mechanistic effects of ease of carbon-nitrogen bond breaking in amide hydrolysis. The mechanisms of hydrolysis of N-acylimidazoles and N-acylbenzimidazoles[J]. Acc Chem Res, 1993, 26(6): 325-331. [37]Wu H, Liu Y, Wang C, et al. Reconstructing polyamide with nucleophilic catalyst for enhancing reverse osmosis membrane performance[J]. Desalination, 2022, 537: 115886. [38]Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem Res, 1936, 28(8): 988-994. [39]Tao J, Song X, Bao B, et al. The role of surface wettability on water transport through membranes[J]. Chem Eng Sci, 2020, 219: 115602. [40]Wei J, Liu X, Qiu C, et al. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes[J]. J Membr Sci, 2011, 381(1): 110-117. [41]Dugas M P, Zhong S, Park B, et al. Influence of solvent affinity on transport through cross-linked copolymer membranes for organic solvent nanofiltration[J]. ACS Appl Polym Mater, 2023, 5(9): 6781-6794. [42]Buekenhoudt A, Bisignano F, De Luca G, et al. Unravelling the solvent flux behaviour of ceramic nanofiltration and ultrafiltration membranes[J]. J Membr Sci, 2013, 439: 36-47. [43]Machado D R, Hasson D, Semiat R. Effect of solvent properties on permeate flow through nanofiltration membranes. Part Ⅰ: investigation of parameters affecting solvent flux[J]. J Membr Sci, 1999, 163(1): 93-102. [44]Li Y, Zhu J, Li S, et al. Flexible aliphatic-aromatic polyamide thin film composite membrane for highly efficient organic solvent nanofiltration[J]. ACS Appl Mater Interfaces, 2020, 12(28): 31962-31974. [45]Abbott S. Solubility, similarity, and compatibility: A general-purpose theory for the formulator[J]. Curr Opin Colloid Interface Sci, 2020, 48: 65-76. [46]Salmani H J, Hardian R, Kalani H, et al. Predicting the performance of organic solvent reverse osmosis membranes using artificial neural network and principal component analysis by considering solvent-solvent and solvent-membrane affinities[J]. J Membr Sci, 2023, 687: 122025. [47]祝振鑫. 关于推荐使用“切割分子量”一词的建议[J]. 膜科学与技术, 2006, 26: 81-82. [48]中华人民共和国国家质量监督检验检疫总局. GB/T 20103—2006 膜分离技术术语[S]. 2006. [49]Yang C, Xu W, Nan Y, et al. Novel solvent-resistant nanofiltration membranes using MPD co-crosslinked polyimide for efficient desalination[J]. J Membr Sci, 2020, 616: 118603. [50]Fu W, Zhang W, Chen H, et al. A high-flux organic solvent nanofiltration membrane with binaphthol-based rigid-flexible microporous structures[J]. J Mater Chem A, 2021, 9(11): 7180-7189. [51]Liu J, Xu Q, Jiang J. A molecular simulation protocol for swelling and organic solvent nanofiltration of polymer membranes[J]. J Membr Sci, 2019, 573: 639-646. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号