聚醚改性聚二甲基硅氧烷膜制备及其CO2/N2分离性能研究
作者:何悦, 王生伟, 白云翔, 张春芳
单位: 江南大学 合成与生物胶体教育部重点实验室 化学与材料工程学院, 无锡 214122
关键词: 聚二甲基硅氧烷; 聚醚改性; CO2分离; 操作压差
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.002
分类号: TQ028
出版年,卷(期):页码: 2025,45(4):15-24

摘要:
通过硅氢加成反应,以烯丙基聚乙二醇(APEG-350/APEG-500)、乙烯基三乙氧基硅烷(VTES)和含氢硅油(PHMS)为原料,设计合成聚醚功能化交联剂HVA350/HVA500,并利用其与聚二甲基硅氧烷(PDMS)进行化学交联,构建聚醚改性PDMS(PDMS/HVA)膜,研究交联剂结构和添加量对膜理化结构和CO2/N2分离性能的影响。结果表明,PDMS/HVA膜具有优异的成膜性和机械性能;聚醚功能化交联网络的形成不但能够减小PDMS链间距,提高膜的CO2扩散选择性,而且锚定的聚醚链段可通过偶极-四极矩作用提高CO2溶解选择性。当HVA添加量为30%(质量分数)时,PDMS/HVA350的CO2渗透系数为2 934 Barrer,CO2/N2选择性为11.37;PDMS/HVA500膜的CO2渗透系数为2 992 Barrer,CO2/N2选择性为10.42,均表现出优异的CO2分离性能。
 
Polyether-functionalized crosslinker (HVA350/HVA500) was designed and synthesized via hydrosilylation of allyl poly(ethylene glycol) (APEG-350/APEG-500), vinyltriethoxysilane (VTES), and polymethylhydrosiloxane (PHMS). The crosslinker was employed to chemically crosslink polydimethylsiloxane (PDMS), forming polyether-modified PDMS (PDMS/HVA) membranes. The effects of crosslinker structure and content on the physicochemical structure and CO2/N2 separation performance of the membranes were systematically investigated. The results demonstrated that PDMS/HVA membranes exhibited excellent film-forming ability and mechanical properties. The formation of polyether-functionalized crosslinked networks not only reduced the interchain spacing of PDMS, enhancing CO2 diffusion selectivity, but also improved CO2 solubility selectivity through dipole-quadrupole interactions between anchored polyether segments and CO2 molecules. At a  30% (mass fraction) HVA loading, the CO2 permeability of PDMS/HVA350 reached 2 934 Barrer with a CO2/N2 selectivity of 11.37, while PDMS/HVA500 exhibited a CO2 permeability of 2 992 Barrer and a CO2/N2 selectivity of 10.42, demonstrating outstanding CO2 separation performance. 
 

基金项目:
国家自然科学基金面上项目(22278177)

作者简介:
何悦(2000-),女,江西南昌人,硕士研究生,主要从事膜材料制备及应用研究

参考文献:
[1]Khan S, Khulief Y, Juanes R, et al. Geomechanical modeling of CO2 sequestration: A review focused on CO2 injection and monitoring[J]. J Environ Chem Eng, 2024, 12(3): 112847.
[2]Gao Y, Ning C, Liu L, et al. Research progress of CO2 absorbent in postcombustion capture process[J]. Asia-Pac J Chem Eng, 2025: e3172.
[3]Liang C Z, Feng F, Wu J, et al. Elevating gas separation performance of Pebax-based membranes by blending with a PDMSPEO block copolymer for CO2 capture and separation[J]. J Membr Sci, 2025, 716: 123528.
[4]Mulder M. 膜技术基本原理[M]//第二版. 李琳等译. 北京: 清华大学出版社, 1999: 1-6.
[5]He X, Hgg M B. Membranes for environmentally friendly energy processes[J]. Membranes, 2012, 2(4): 706-726.
[6]Lasseuguette E, Comesaa-Gándara B. Polymer membranes for gas separation[J]. Membranes, 2022, 12(2): 207.
[7]Hong T, Cao P F, Zhao S, et al. Tailored CO2-philic gas separation membranes via one-pot thiol-ene chemistry[J]. Macromolecules, 2019, 52(15): 5819-5828.
[8]Rao H X, Liu F N, Zhang Z Y. Preparation and oxygen/nitrogen permeability of PDMS crosslinked membrane and PDMS/tetraethoxysilicone hybrid membrane[J]. J Membr Sci, 2007, 303(1): 132-139.
[9]Nour M, Berean K, Griffin M J, et al. Nanocomposite carbon-PDMS membranes for gas separation[J]. Sens Actuat B Chem, 2012, 161(1): 982-988.
[10]Wang H, Ni Y, Dong Z, et al. A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation[J]. React Funct Polym, 2021, 160: 104825.
[11]Liu J, Hou X, Park H B, et al. High-performance polymers for membrane CO2/N2 separation[J]. Chem Eur J, 2016, 22(45): 15980-15990.
[12]Hong T, Lai S, Mahurin S M, et al. Highly permeable oligo(ethylene oxide)-co-poly(dimethylsiloxane) membranes for carbon dioxide separation[J]. Adv Sustain Syst, 2018, 2(4): 1700113.
[13]You H, Hossain I, Kim T H. Piperazinium-mediated crosslinked polyimide-polydimethylsiloxane (PIPDMS) copolymer membranes: the effect of PDMS content on CO2 separation[J]. RSC Adv, 2018, 8(3): 1328-1336.
[14]Dounya M, Maschke U, Bouchikhi N, et al. Characterization of swelling behavior and elastomer properties of acrylate polymers containing 2-ethylhexyl and isobornyl esters[J]. Polym Bull, 2023, 80(9): 10073-10098.
[15]Gonzales R R, Kato N, Awaji H, et al. Development of polydimethylsiloxane composite membrane for organic solvent separation[J]. Sep Purif Technol, 2022, 285: 120369.
[16]Gopakumar S, Nair M G. Swelling characteristics of NR/PU block copolymers and the effect of NCO/OH ratio on swelling behaviour[J]. Polymer, 2005, 46(23): 10419-10430.
[17]Mendoza-Mendoza E, Espaa-Sánchez B L, Montes-Luna A D J, et al. Effect of poly(ether block amide)-graphene/ZnO membranes in mixed gas separation performance[J]. J Appl Polym Sci, 2023, 140(6): e53453.
[18]Adrees M, Iqbal S S, Ahmad A, et al. Characterization of novel polydimethylsiloxane (PDMS) and copolymer polyvinyl chloride-co-vinyl acetate (PVCA) enhanced polymer blend membranes for CO2 separation[J]. Polym Test, 2019, 80: 106163.
[19]Hong T, Chatterjee S, Mahurin S M, et al. Impact of tuning CO2-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation[J]. J Membr Sci, 2017, 530: 213-219.
[20]Haider B, Dilshad M R, Rehman M A U, et al. Highly permeable novel PDMS coated asymmetric polyethersulfone membranes loaded with SAPO-34 zeolite for carbon dioxide separation[J]. Sep Purif Technol, 2020, 248: 116899.
[21]Shirali N, Danalou S Z, Abu-Obaid S, et al. Interfacial crosslinking to prepare ultra-thin polydimethylsiloxane thin-film composite membranes[J]. J Membr Sci, 2025, 717: 123532.
[22]Zainuddin M I F, Ahmad A L, Shah Buddin M M H. Polydimethylsiloxane/magnesium oxide nanosheet mixed matrix membrane for CO2 separation application[J]. Membranes, 2023, 13(3): 337.
[23]Ding X, Tan F, Zhao H, et al. Ultrapermeable membranes based on connected cluster of hollow polydimethylsiloxane nanoparticles for gas separation[J]. Particuology, 2023, 79: 45-53.
[24]Ahmad I, Jee H, Song S, et al. Delaminated or multilayer Ti3C2TX-MXene-incorporated polydi-methylsiloxane mixed-matrix membrane for enhancing CO2/N2 separation[J]. Mater Today Sustain, 2023, 23: 100410.
[25]何文, 王波, 冯晗俊, 等. 氨基修饰的聚二甲基硅氧烷复合膜的制备及其CO2/N2分离性能研究[J]. 化工新型材料, 2025, 53(2): 81-86.
[26]Ali S, Farrukh S, Karim S S, et al. Investigation of the effect of Ni and Cu variant MOF-74 in the polydimethylsiloxane (PDMS)-based mixed matrix membranes (MMMs) for efficient gas separation applications[J]. Environ Sci Pollut Res, 2023, 30(50): 109453-109468.
[27]Hossain I, Husna A, Chaemchuen S, et al. Cross-linked mixed-matrix membranes using functionalized UiO-66-NH2 into PEG/PPG-PDMS-based rubbery polymer for efficient CO2 separation[J]. ACS Appl Mater Interfaces, 2020, 12(52): 57916-57931.
[28]Felemban B F, Iqbal S S, Bahadar A, et al. Reinforcement of single-walled carbon nanotubes on polydimethylsiloxane membranes for CO2, O2, and N2 permeability/selectivity[J]. Environ Sci Pollut Res, 2023, 30(25): 66800-66811.
[29]Grushevenko E, Borisov I, Bakhtin D, et al. The effect of the type and concentration of the crosslinking diene on the gas transport properties of membranes based on polyoctylmethylsiloxane[J]. Membr Membr Technol, 2020, 2: 399-406.
[30]Selyanchyn R, Fujikawa S. Molecular hybridization of polydimethylsiloxane with zirconia for highly gas permeable membranes[J]. ACS Appl Polym Mater, 2019, 1(5): 1165-1174.
[31]Pan Y, Chen G, Liu J, et al. PDMS thin-film composite membrane fabricated by ultraviolet crosslinking acryloyloxy-terminated monomers[J]. J Membr Sci, 2022, 658: 120763.
[32]Kim D, Hossain I, Kim Y, et al. PEG/PPG-PDMS-adamantane-based crosslinked terpolymer using the ROMP technique to prepare a highly permeable and CO2-selective polymer membrane[J]. Polymers, 2020, 12(8): 1674.
[33]Ashtiani S, Sofer Z, Prua F, et al. Molecular-level fabrication of highly selective composite ZIF8CNTPDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations[J]. Sep Purif Technol, 2021, 274: 119003.
[34]Robeson L M. The upper bound revisited[J]. J Membr Sci, 2008, 320(1): 390-400.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号