聚丙烯腈基不对称多孔炭分子筛膜的制备及性能研究 |
作者:金鑫1,2, 徐瑞松2, 杨卫亚1, 李琳2, 王同华2 |
单位: 1. 中石化(大连)石油化工研究院有限公司, 大连 116041; 2. 大连理工大学 化工学院 精细化工国家重点实验室, 大连市膜与膜过程重点实验室, 大连116024 |
关键词: 炭分子筛膜; 聚丙烯腈; 不对称多孔膜; 气体分离膜 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.003 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(4):25-31 |
摘要: |
以聚丙烯腈(PAN)为前驱体,通过相转化法制备不对称多孔聚合物膜,结合氧化预处理及高温炭化(500~800 ℃)工艺,成功开发了PAN基不对称多孔炭分子筛膜。结合多种表征技术,探究了热处理过程中化学结构、炭微观结构、膜微观形貌及孔结构的演变规律。实验结果表明,氧化预处理诱导分子链形成梯形的交联网络结构,有效抑制了炭化过程中孔结构塌陷,所得炭膜维持了前驱体聚合物膜的三维贯通孔道结构。生成的碳结构为无定型结构,且炭层间距较大,有利于气体分子渗透。800 ℃炭化制备的PAN基多孔炭膜O2渗透通量可达1 166 GPU,O2/N2选择性为1.10,高于努森扩散理论值。本研究验证了PAN作为膜的低成本碳基支撑层材料的可行性,为开发高性能中空纤维复合炭膜提供了实验支持。 |
In this work, polyacrylonitrile (PAN) was utilized as a precursor to fabricate asymmetric porous polymer membranes via the phase inversion method. Subsequently, oxidative pretreatment and high-temperature carbonization (500~800 ℃) were employed to successfully develop PAN-based asymmetric porous carbon molecular sieve membranes. A combination of characterization techniques was applied to systematically investigate the evolutionary mechanisms of chemical structures, carbon microstructures, membrane morphologies, and pore architectures during thermal treatment. Experimental results revealed that oxidative pretreatment induced the formation of a ladder-type cross-linked network structure within molecular chains, effectively mitigating pore collapse during carbonization. The resulting carbon membranes retained the three-dimensional interconnected pore channels inherited from the precursor polymer membrane. The disordered and loosely stacked carbon layers facilitated enhanced gas molecule permeation. The PAN-derived porous carbon membrane carbonized at 800 ℃ exhibited an exceptional O2 permeance of 1 166 GPU with an O2/N2 selectivity of 1.10, surpassing the theoretical Knudsen diffusion limit. This work validates the feasibility of PAN as a cost-effective support layer material and provides experimental insights for developing high-performance hollow fiber composite carbon membranes. |
基金项目: |
国家重点研发计划(2021YFB3801200); 国家自然科学基金(22278051, 22178044, 22378043) |
作者简介: |
金鑫(1989-),女,辽宁大连人,工程师,博士,主要研究方向为分子筛材料、膜材料 |
参考文献: |
[1]Liu Z Y, Qiu W L, Quan W Y, et al. Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations[J]. Nat Mater, 2023, 22: 109-116. [2]Kumar R, Koros W J.110th anniversary: High performance carbon molecular sieve membrane resistance to aggressive feed stream contaminants[J]. Ind Eng Chem Res, 2019, 58: 6740-6746. [3]Sanyal O, Zhang C, Wenz G B, et al. Next generation membranes-using tailored carbon[J]. Carbon, 2018, 127: 688-698. [4]Lei L F, Bai L, Lindbrathen A, et al. Carbon membranes for CO2 removal: Status and perspectives from materials to processes[J]. Chem Eng J, 2020, 401: 126084. [5]Kim S J, Kwon Y S, Kim D H, et al. A review on polymer precursors of carbon molecular sieve membranes for olefin/paraffin separation[J]. Membranes, 2021, 11: 482. [6]Wang Q X, Huang F, Cornelius C J, et al. Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations[J]. J Membr Sci, 2021, 621: 118785. [7]Salleh W N W, Ismaill A F. Carbon membranes for gas separation processes recent progress and future perspective[J]. J Membr Sci Res, 2015, 1: 2-15. [8]Salleh W N W, Ismail A F, Matsuura T, et al. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review[J]. Sep Purif Rev, 2011, 40: 261-311. [9]Ismail A F, Rana D, Matsuura T, et al. Carbon-based membranes for separation processes[M]//New York: Springer, 2011:30. [10]Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation - A review[J]. Carbon, 2004, 42: 241-259. [11]Park H B, Kim Y K, Lee J M, et al. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes[J]. J Membr Sci, 2004, 229: 117-127. [12]徐瑞松, 李琳, 侯蒙杰,等. 新型炭基膜材料前驱体聚合物的研究进展[J]. 膜科学与技术, 2020, 40(1): 250-259. [13]Qiu W L, Zhang K, Li F S, et al. Gas separation performance of carbon molecular sieve membranes based on 6FDAmPDA/DABA (3∶2) polyimide[J]. Chem Sus Chem, 2014, 7(4): 1186-1194. [14]Hou M J, Li L, Xu R S,et al. Precursor-chemistry engineering toward ultrapermeable carbon molecular sieve membrane for CO2 capture[J]. J Energy Chem, 2025, 102: 421-430. [15]Swaidan R J, Ma X H, Pinnau I. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation[J]. J Membr Sci, 2016, 520: 983-989. [16]Cao Y H, Zhang K, Sanyal O, et al. Carbon molecular sieve membrane preparation by economical coating and pyrolysis of porous polymer hollow fibers[J]. Angew Chem Int Ed, 2019, 58: 12149-12153. [17]Schindler E, Maier F. Manufacture of porous carbon membranes[P]. US patent, 4919860, 1990-04-24. [18]Linkov V M, Sanderson R D, Jacob E P. Highly asymmetrical carbon membranes[J]. J Membr Sci, 1994, 95: 93-99. [19]David L I B, Ismail A F. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation[J]. J Membr Sci, 2003, 213: 285-291. [20]Xu R S, He L, Li L, et al. Ultraselective carbon molecular sieve membrane for hydrogen purification[J]. J Energy Chem, 2020, 50: 16-24. [21]Jin X, Li L, Xu R S, et al. Effects of thermal cross-linking on the structure and property of asymmetric membrane prepared from the polyacrylonitrile[J]. Polymers, 2018, 10:539. [22]Xu R S, Hou M J, Wang Y, et al. High-performance carbon molecular sieve membrane for C2H4/C2H6 separation: Molecular insight into the structure-property relationships[J]. Carbon, 2023, 201: 24-36. [23]Hou M J, Li L, He Z L, et al. High hydrogen permselective carbon molecular sieve membrane and its structural formation mechanism[J]. Carbon, 2023, 205: 194-206. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号