聚酰胺薄膜界面聚合动态观测与微观机制研究 |
作者:王若湲, 杨天祥, 张会书, 赵颂 |
单位: 天津大学 化工学院, 天津市膜科学与海水淡化技术重点实验室, 化学工程与低碳技术全国重点实验室(天津大学), 天津 300072 |
关键词: 聚酰胺薄膜; 界面聚合; 粒子图像测速; 流体动力学; 性能优化 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.004 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(4):32-42 |
摘要: |
本研究采用粒子图像测速技术对聚酰胺薄膜的界面聚合成膜过程进行实时动态观测。结合流体动力学分析、形貌表征及分离性能测试,系统揭示了成膜过程的微观机制及其对膜结构与性能的影响。研究结果表明,聚酰胺界面聚合过程可分为单体扩散-反应、马兰戈尼调控和薄膜自抑制三个关键阶段,各阶段展现出独特的流体力学行为。聚酰胺复合膜的渗透通量和截留率与成膜过程呈现出显著的对应关系。研究阐明了流体动力学行为与薄膜形成之间的内在联系,为聚酰胺复合膜的制备工艺优化及性能调控提供了理论支撑。 |
[1]Lu X, Elimelech M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions[J]. Chem Soc Rev, 2021, 50(11): 6290-6307. [2]Shen L, Cheng R, Yi M, et al. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving[J]. Nat Commun, 2022, 13(1): 500. [3]Seong J G, Lee W H, Lee J, et al. Microporous polymers with cascaded cavities for controlled transport of small gas molecules[J]. Sci Adv, 2021, 7(40): eabi9062. [4]Park S J, Lee M S, Kilic M E, et al. Autonomous interfacial assembly of polymer nanofilms via surfactant-regulated marangoni instability[J]. Nano Lett, 2023, 23(11): 4822-4829. [5]Lee M S, Lee J, Kang J, et al. Interfacial assembly of polyamide nanofilm membranes regulated by surfactants with different structural characteristics[J]. Chem Eng J, 2024, 486: 150159. [6]Mohammed S, Aburabie J, Hashaikeh R. Facile morphological tuning of thin film composite membranes for enhanced desalination performance[J]. npj Clean Water, 2023, 6(1): 55. [7]Waheed A, Baig U, Aljundi I H. Fabrication of polyamide thin film composite membranes using aliphatic tetra-amines and terephthaloyl chloride crosslinker for organic solvent nanofiltration[J]. Sci Rep, 2023, 13(1): 11691. [8]Guo B B, Liu C, Zhu C Y, et al. Double charge flips of polyamide membrane by ionic liquid-decoupled bulk and interfacial diffusion for on-demand nanofiltration[J]. Nat Commun, 2024, 15(1): 2282. [9]Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability[J]. Nat Chem, 2011, 3(5): 382-387. [10]Jimenez-Solomon M F, Song Q, Jelfs K E, et al. Polymer nanofilms with enhanced microporosity by interfacial polymerization[J]. Nat Mater, 2016, 15(7): 760-767. [11]Adamczak M, Kamińska G, Bohdziewicz J. Preparation of polymer membranes by in situ interfacial polymerization[J]. Int J Polym Sci, 2019, (1): 6217924. [12]Zhao G J, Li L L, Gao H Q, et al. Polyamide nano-films through a non-isothermal-controlled interfacial polymerization[J]. Adv Funct Mater, 2024, 34(18): 2313026. [13]Wittbecker E L, Morgan P W. Interfacial polyco-ndensation. Ⅰ[J]. J Polym Sci, 1959, 40(137): 289-297. [14]Morgan P W, Kwolek S L. Interfacial polyco-ndensation. Ⅱ. Fundamentals of polymer formation at liquid interfaces[J]. J Polym Sci, 1959, 40(137): 299-327. [15]Geise G M. Why polyamide reverse-osmosis membranes work so well[J]. Science, 2021, 371(6524): 31-32. [16]Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. [17]Ucak K, Karatas F, Cetinkaya E, et al. Synchronous PIV measurements of a self-powered blood turbine and pump couple for right ventricle support[J]. Sci Rep, 2024, 14(1): 19962. [18]Yang Y, Qi M, Li J, et al. Experimental study of flow field around pile groups using PIV[J]. Exp Therm Fluid Sci, 2021, 120: 110223. [19]Kinoshita H, Kaneda S, Fujii T, et al. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV[J]. Lab Chip, 2007, 7(3): 338-346. [20]El-Adawy M, Heikal M, Aziz A R A, et al. Stereoscopic particle image velocimetry for engine flow measurements: Principles and applications[J]. Alex Eng J, 2021, 60(3): 3327-3344. [21]Goyal R, Gandhi B K, Cervantes M J. PIV measurements in Francis turbine - a review and application to transient operations[J]. Renew Sustain Energy Rev, 2018, 81: 2976-2991. [22]Liu A, Lin J, Zhuang Y. PIV experimental study on the phase change behavior of phase change material with partial filling of metal foam inside a cavity during melting[J]. Int J Heat Mass Transf, 2022, 187: 122567. [23]Belloň T, Slouka Z. Overlimiting convection at a heterogeneous cation-exchange membrane studied by particle image velocimetry[J]. J Membr Sci, 2022, 643: 120048. [24]Freger V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization[J]. Langmuir, 2003, 19(11): 4791-4797. [25]Freger V, Srebnik S. Mathematical model of charge and density distributions in interfacial polymerization of thin films[J]. Appl Polym Sci, 2003, 88(5): 1162-1169. [26]Ghosh A K, Jeong B H, Huang X, et al. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties[J]. J Membr Sci, 2008, 311(1/2): 34-45. [27]Zhao S, Zhao Z, Zhang X, et al. Polyamide membranes with tunable surface charge induced by dipole-dipole interaction for selective ion separation[J]. Environ Sci Technol, 2024, 58(11): 5174-5185. [28]Qiu S, Wu L, Zhang L, et al. Preparation of reverse osmosis composite membrane with high flux by interfacial polymerization of MPD and TMC[J]. Appl Polym Sci, 2009, 112(4): 2066-2072. [29]Tsuru T, Sasaki S, Kamada T, et al. Multilayered polyamide membranes by spray-assisted 2-step interfacial polymerization for increased performance of trimesoyl chloride (TMC)/m-phenylenediamine (MPD)-derived polyamide membranes[J]. J Membr Sci, 2013, 446: 504-512. [30]Raffel M, Willert C E, Scarano F, et al. Particle image velocimetry: a practical guide[M]//Berlin: springer, 2018: 574. [31]Tropea C, Yarin A L, Foss J F. Springer handbook of experimental fluid mechanics[M]// Berlin: Springer, 2007: 1553. [32]Mao Y, Yang L, Chen C, et al. Comparison of the measurement results of PIV with different tracer[D]. Bristol: IOP publishing, 2023. [33]Geise G M, Park H B, Sagle A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. J Membr Sci, 2011, 369(1): 130-138. [34]Qi Y, Tong T, Zhao S, et al. Reverse osmosis membrane with simultaneous fouling-and scaling-resistance based on multilayered metal-phytic acid assembly[J]. J Membr Sci, 2020, 601: 117888. [35]Li S, Zhang R, Yao Q, et al. High flux thin film composite (TFC) membrane with non-planar rigid twisted structures for organic solvent nanofiltration (OSN)[J]. Sep Purif Technol, 2022, 286: 120496. [36]Li T, Zhang X, Zhang Y, et al. Nanofiltration membrane comprising structural regulator cyclen for efficient Li+/Mg2+ separation[J]. Desalination, 2023, 556: 116575. [37]Leal L G. Advanced transport phenomena: fluid mechanics and convective transport processes[M]// Cambridge: Cambridge university press, 2007: 904. [38]Stone H A. Dynamics of drop deformation and breakup in viscous fluids[J]. Annu Rev Fluid Mech, 1994, 26(1): 65-102. [39]Doppelhammer N, Puttinger S, Pellens N, et al. Generation and observation of long-lasting and self-sustaining marangoni flow[J]. Langmuir, 2023, 39(22): 7804-7810. [40]Rankin D J, Bocquet L, Huang D M. Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane[J]. J Chem Phys, 2019, 151(4): 044705. [41]Tian Y, Gao X, Hong W, et al. Kinetic insights into marangoni effect-assisted preparation of ultrathin hydrogel films[J]. Langmuir, 2018, 34(41): 12310-12317. [42]Kwon Y N, Leckie J O. Hypochlorite degradation of crosslinked polyamide membranes: Ⅱ. Changes in hydrogen bonding behavior and performance[J]. J Membr Sci, 2006, 282(1): 456-464. [43]Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: Ⅰ. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1): 149-167. [44]Skrovanek D J, Howe S E, Painter P C, et al. Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide[J]. Macromolecules, 1985, 18(9): 1676-1683. [45]Xu S, Liu L, Wang Y. Network cross-linking of polyimide membranes for pervaporation dehydration[J]. Sep Purif Technol, 2017, 185: 215-226. [46]Freger V. Kinetics of film formation by interfacial polycondensation[J]. Langmuir, 2005, 21(5): 1884-1894. [47]Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes[J]. J Membr Sci, 2009, 336(1): 140-148. [48]Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches[J]. Water Res, 2015, 80: 306-324. [49]Petersen R J. Composite reverse osmosis and nanofiltration membranes[J]. J Membr Sci, 1993, 83(1): 81-150. [50]Bartels C R. A surface science investigation of composite membranes[J]. J Membr Sci, 1989, 45(3): 225-245. [51]Xu L, Xu J, Shan B, et al. Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination[J]. J Mater Chem A, 2017, 5(17): 7920-7932. |
基金项目: |
国家自然科学基金项目(22278304) |
作者简介: |
王若湲(1999-),女,内蒙古鄂尔多斯人,硕士研究生,主要从事聚酰胺界面聚合成膜过程研究 |
参考文献: |
This work employed particle image velocimetry (PIV) to conduct real-time dynamic observation of the interfacial polymerization process during polyamide film formation. Based on hydrodynamic analysis, morphological characterization and separation performance, the research systematically elucidated the microscopic mechanism of film formation and their impact on the structure and properties of the membranes. The findings revealed that the interfacial polymerization process of polyamide film could be divided into three critical stages: monomer diffusion-reaction, Marangoni regulation, and film self-inhibition, each exhibiting unique hydrodynamic behaviors. A significant correlation was observed between water permeance and salt rejection of the polyamide composite membranes and the film formation process. The study clarified the intrinsic relationship between hydrodynamic behavior and film formation, providing theoretical support for the optimization of preparation techniques and performance regulation of polyamide composite membranes. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号