纳滤膜构效关系及其分盐条件优化研究 |
作者:王子旭1,2, 路宏伟3, 喻慧3, 彭博3, 罗建泉2, 万印华2, 肖春艳1, 冯世超2 |
单位: 1. 河南理工大学 资源环境学院, 焦作 454003; 2. 中国科学院过程工程研究所 生物药制备与递送全国重点实验室, 北京 100190; 3. 湖南澳维科技股份有限公司, 株洲 412000 |
关键词: 纳滤膜; 构效关系; NaCl/Na2SO4分离; 正交实验 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.008 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(4):77-85 |
摘要: |
纳滤(NF)技术因其高能效和环境友好等优点,在工业高盐废水处理领域发挥着重要的作用。本研究选取了三种商业纳滤膜(XC-N、NF30、NF60)作为研究对象,研究了膜结构与分盐性能之间的关系,并通过正交实验确定了纳滤膜对混盐溶液的最佳分离条件。结果表明,三种纳滤膜的分离层均为半芳香族聚酰胺材质。其中,XC-N膜孔径最小、孔径分布最窄、表面负电荷密度最大,对本文研究的六种盐截留率均最高。混盐条件下,最佳分离条件为:采用XC-N膜,溶液pH值为7,混盐溶液质量浓度为10 000 mg/L,两种盐的质量比为1∶1,错流压力为0.3 MPa,流速为40 L/h。在此条件下,分离因子达到46.02。该研究结果不仅有助于指导高分离选择性纳滤膜设计和制备,并且为纳滤膜的工业应用提供了参考。 |
Nanofiltration (NF) technology plays an important role in the treatment of industrial high-salt wastewater due to its high energy efficiency and environmental benefits. In this study, three commercial nanofiltration membranes (XC-N, NF30 and NF60) were selected to investigate the relationship between membrane structure and salt separation performance, and the optimal separation conditions for mixed salt solutions were determined by orthogonal experiments. The results showed that all three membranes had a separation layer composed of semi-aromatic polyamide material. Among them, the XC-N membrane had the smallest pore size, the narrowest pore size distribution, the largest surface negative charge density, and the highest retention rate for all six salts studied in this paper. Under mixed-salt conditions, the optimal separation conditions were identified as follows: XC-N membrane, solution pH of 7, mixed-salt concentration of 10 000 mg/L, salt mass ratio of 1∶1, cross-flow pressure of 0.3 MPa, and a flow rate of 40 L/h. Under these conditions, the separation factor of NaCl/Na2SO4 reached 46.02. These findings not only provide valuable insights for the design and fabrication of NF membranes with high separation performance but also offer practical guidance for their industrial applications. |
基金项目: |
国家重点研发计划 (2021YFC3201402) |
作者简介: |
王子旭(1996-),男,天津人,硕士生,从事分离膜制备与应用研究 |
参考文献: |
[1]高爽, 刘慧敏, 王美慧, 等. 高盐废水处理新工艺研究进展[J]. 现代化工, 2022, 42(2): 68-71. [2]Ren Y, Qi P, Han Y, et al. Mix-charged nanofiltration membrane for efficient organic removal from high-salinity wastewater: the role of charge spatial distribution[J]. Environ Sci Technol, 2025, 59(2): 1434-1447. [3]施华彪. 分盐零排放技术在煤化工高盐废水中的应用[J]. 化学工业, 2024, 42(2): 56-60. [4]Dastgheib S A, Salih H H. Treatment of highly saline brines by supercritical precipitation followed by supercritical membrane separation[J]. Ind Eng Chem Res, 2019, 58(8): 3370-3376. [5]Shi J, Huang W, Han H, et al. Review on treatment technology of salt wastewater in coal chemical industry of china[J]. Desalination, 2020, 493: 114640. [6]郭世伟, 郑力玮, 罗建泉, 等. 纳滤膜在高盐废水处理中的应用研究进展[J]. 膜科学与技术, 2022, 42(2): 175-182. [7]Sarkar P, Wu C, Yang Z, et al. Empowering ultrathin polyamide membranes at the water-energy nexus:strategies, limitations, and future perspectives[J]. Chem Soc Rev, 2024, 53(9): 4374. [8]Zhang T, Fu R, Wang K, et al. Effect of synthesis conditions on the non-uniformity of nanofiltration membrane pore size distribution[J]. J Membr Sci, 2022, 647: 120304. [9]Wadekar S S, Wang Y, Lokare O R, et al. Influence of chemical cleaning on physicochemical characteristics and ion rejection by thin film composite nanofiltration membranes[J]. Environ Sci Technol, 2019, 53(17): 10166-10176. [10]Veerababu P, Vyas B B, Singh P S, et al. Limiting thickness of polyamide-polysulfone thin-film-composite nanofiltration membrane[J]. Desalination, 2014, 346: 19-29. [11]李鹏, 孙琪琪, 王浩, 等. 碟管式高选择性纳滤膜的分盐实验及工业化示范[J]. 水处理技术, 2023, 49(9): 91-95. [12]Nilsson M, Tragardh G, Ostergren K. Influence of temperature and cleaning on aromatic and semi-aromatic polyamide thin-film composite NF and RO membranes[J]. Sep Purif Technol, 2008, 62(3): 717-726. [13]Nilsson M, Tragardh G, Ostergren K. The influence of pH, salt and temperature on nanofiltration performance[J]. J Membr Sci, 2008, 312(1/2): 97-106. [14]Meschke K, Hansen N, Hofmann R, et al. Influence of process parameters on separation performance of strategic elements by polymeric nanofiltration membranes[J]. Sep Purif Technol, 2020, 235: 116186. [15]曹阳, 任玉灵, 郭世伟, 等. 聚酰胺薄层复合膜的界面聚合制备过程调控研究进展[J]. 化工进展, 2020, 39(6): 2125-2134. [16]Tang C Y, Kwon Y, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes i. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1/2/3): 149-167. [17] Kwon Y, Leckie J O. Hypochlorite degradation of crosslinked polyamide membranes - Ⅱ. Changes in hydrogen bonding behavior and performance[J]. J Membr Sci, 2006, 282(1-2): 456-464. [18]Sun H, Liu J, Luo X, et al. Fabrication of thin-film composite polyamide nanofiltration membrane based on polyphenol intermediate layer with enhanced desalination performance[J]. Desalination, 2020, 488: 114525. [19]王英伟, 张萌萌, 蒋驰, 等. 聚哌嗪酰胺原生荷正电纳滤膜的制备与性能研究[J]. 膜科学与技术, 2023, 43(2): 41-48. [20]董永平,薛立新,陈梦瑶,等.十二烷基硫酸钠(SDS)和强碱(NaOH)对聚酰胺复合纳滤膜的协同调控机理研究[J/OL].化工进展. https://doi.org/10.16085/j.issn.1000-6613.2024-0602. [21]常娜, 高曌寰, 荆兆敬, 等. 界面聚合反应有机溶剂对聚酰胺复合纳滤膜结构及性能的影响[J]. 高分子材料科学与工程, 2022, 38(5): 32-42. [22]Zhan Z, Xu Z, Zhu K, et al. Superior nanofiltration membranes with gradient cross-linked selective layer fabricated via controlled hydrolysis[J]. J Membr Sci, 2020, 604: 118067. [23]Han H, Liu Z, Yu H, et al. Imine-linked integrally crosslinked thin-film composite membrane for organic solvent nanofiltration[J]. J Membr Sci, 2025, 715: 123490. [24]Yang C, Fu X, Hou L, et al. Gradient charge design of cationic covalent organic framework membranes toward enhanced acid recovery efficiency[J]. J Membr Sci, 2025, 717: 123606. [25]Luo J, Wan Y. Mix-charged nanofiltration membrane: engineering charge spatial distribution for highly selective separation[J]. Chem Eng J, 2023, 464: 142689. [26]Yu H, Xu L, Luo Y, et al. Preparation of highly permeable and selective nanofiltration membranes with antifouling properties by introducing the capsaicin derivative into polyamide thin selective layer by bidirectional interfacial polymerization[J]. J Membr Sci, 2023, 675: 121569. [27]Guo L, Xie Y, Sun W, et al. Research progress of high-salinity wastewater treatment technology[J]. Water (Basel), 2023, 15(4): 012042. [28]夏俊方. 纳滤膜在高盐废水零排放应用中的分盐特征研究[J]. 工业用水与废水, 2020, 51(1): 28-31. [29]Luo J, Wan Y. Effects of pH and salt on nanofiltration - a critical review[J]. J Membr Sci, 2013, 438: 18-28. [30]Roy Y, Warsinger D M, Lienhard J H. Effect of temperature on ion transport in nanofiltration membranes:diffusion,convection and electromigration[J].Desalination, 2017, 420: 241-257. [31]王钊. 高分子膜错流纳滤过程的理论分析与有限元模拟[D].济南:山东大学, 2014. [32]Hsu M, Tsou T, Hsu J, et al. Influence of pore size distribution and applied cross-flow on ion rejection and separation[J]. Sep Purif Technol, 2025, 352: 128248. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号