高分散COF基离子传导膜提高全钒液流电池性能 |
作者:房庭旭1, 逄博1, 崔福军2, 姜晓滨1, 吴雪梅1, 贺高红1 |
单位: 1. 大连理工大学 精细化工国家重点实验室, 膜科学与技术研究开发中心, 大连 116024; 2. 大连理工大学 盘锦产业技术研究院, 盘锦 124221 |
关键词: 质子交换膜; 全钒液流电池; 共价有机框架; 高分散 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.010 |
分类号: TM912.1 |
出版年,卷(期):页码: 2025,45(4):95-103 |
摘要: |
提出一种单体与聚合物溶液先浇铸成前驱体膜,而后溶剂热原位生长的高分散COF复合膜制备方法。硫酸酯化聚苯并咪唑(PBIOSO3H)与磺酸氨单体间具有强氢键相互作用,可在膜中均匀分散单体并原位限域生长磺酸共价有机框架(SCOF),解决了COFs掺杂膜易团聚的问题。硫酸酯化聚苯并咪唑膜中引入SCOF后,质子传导率提高了89.7%,面电阻降低了48.6%,氢钒离子选择性提高了1.5倍。其全钒液流电池在电流密度200 mA/cm2下,能量效率达到79.5%,远高于商业化的Nafion212膜(69.9%),表明本文提出的单体浇铸原位生长制备高分散COF基离子传导膜的方法可以有效提高全钒液流电池性能。 |
A novel preparation method for high dispersing COF-based composite membranes was proposed through a monomer-casting followed by solvothermal in-situ growth strategy. The strong hydrogen bonding interactions between sulfonated polybenzimidazole (PBIOSO3H) and sulfonated amine monomer enabled the uniform dispersion of monomer in the precursor membrane, and the in-situ confined growth of sulfonic acid-functionalized covalent organic framework (SCOF), effectively addressing the aggregation issue of COFs in membranes. The incorporation of sulfonic COF significantly enhanced membrane performance: proton conductivity increased by 89.7%, surface resistance decreased by 48.6%, and proton/vanadium ion selectivity improved 1.5-fold. When applied in vanadium redox flow battery, the composite membrane demonstrated superior energy efficiency of 79.5% at 200 mA/cm2, outperforming commercial Nafion212 membrane (69.9%). These results validate that the proposed monomer-casting/in-situ growth approach is effective for fabricating high dispersion of COF in ion-conductive membranes, and thus effectively enhances the performance of vanadium redox flow battery. |
基金项目: |
国家自然科学基金项目(22378042, 22021005) |
作者简介: |
房庭旭(1999-),男,辽宁辽阳人,硕士研究生,主要研究方向为离子传导膜及液流电池 |
参考文献: |
[1]贾传坤, 王庆. 高能量密度液流电池的研究进展[J]. 储能科学与技术, 2015, 4(05): 467-475. [2]陈寅超. 储能技术在光伏并网发电系统中的应用[J]. 集成电路应用, 2024, 41(12): 314-315. [3]Deguenon L, Yamegueu D, Moussa Kadri S, et al. Overcoming the challenges of integrating variable renewable energy to the grid: A comprehensive review of electrochemical battery storage systems[J]. J Power Sources, 2023, 580: 233343. [4]李章溢, 房凯, 刘强, 等. 储能技术在电力调峰领域中的应用[J]. 电器与能效管理技术, 2019(10): 69-73. [5]胡永强. 分布式储能系统在电力负荷管理中的应用研究[J]. 城市建设理论研究(电子版), 2025(3): 1-3. [6]Zhao N, Platt A, Riley H, et al. Strategy towards high ion selectivity membranes for all-vanadium redox flow batteries[J]. J Energy Storage, 2023, 72: 108321. [7]Cao S, Tan J, Ma L, et al. Covalent organic frameworks-based functional separators for rechargeable batteries: Design, mechanism, and applications[J]. Energy Storage Mater, 2024, 66: 103232. [8]Pang B, Du R, Chen W, et al. Self-supporting sulfonated covalent organic framework as a highly selective continuous membrane for vanadium flow battery[J]. Energy Storage Mater, 2024, 67: 103293. [9]曹鹏程, 吴和培, 刘浩, 等. 全钒液流电池电解液及隔膜研究进展[J]. 化工生产与技术, 2024, 30(06): 13-17. [10]Bui T T, Shin M, Abbas S, et al. Sulfonated para-polybenzimidazole membranes for use in vanadium redox flow batteries[J]. Adv Energy Mater, 2024: 2401375. [11]Sharma J, Kulshrestha V. Advancements in polyelectrolyte membrane designs for vanadium redox flow battery (VRFB)[J]. Results Chem, 2023, 5: 100892. [12]Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chem Rev, 2020, 120(16): 8814-8933. [13]Yuan S, Li X, Zhu J, et al. Covalent organic frameworks for membrane separation[J]. Chem Soc Rev, 2019, 48(10): 2665-2681. [14]Cao L, Wu H, Cao Y, et al. Weakly humidity-dependent proton-conducting cof membranes[J]. Adv Mater, 2020, 32(52): 2005565. [15]Di M, Hu L, Gao L, et al. Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries[J]. Chem Eng J, 2020, 399: 125833. [16]Wang R, Shi X, Xiao A, et al. Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations[J]. J Membr Sci, 2018, 566: 197-204. [17]Liu H, Liu M, Zhang Y, et al. Ultrahigh ion selectivity composite membrane contained cationic covalent organic nanosheets for vanadium redox flow battery[J]. J Membr Sci, 2025, 713: 123314. [18]Wang J, Xu W, Xu F, et al. A polybenzimidazole-covalent organic framework hybrid membrane with highly efficient proton-selective transport channels for vanadium redox flow battery[J]. J Membr Sci, 2024, 695: 122470. [19]Wang Y, Ren L, Wang J, et al. In-situ growth of anionic covalent organic frameworks efficaciously enhanced the monovalent selectivity of anion exchange membranes[J]. J Membr Sci, 2022, 659: 120818. [20]Zhang L, Gao Z, Kong Y, et al. Enhanced mechanical property and proton conductivity of polybenzimidazole membrane by in-situ synthesized ionic covalent organic framework[J]. J Membr Sci, 2024, 708: 123088. [21]Pang B, Zhang Q, Yan X, et al. Superior acidic sulfate ester group based high conductive membrane for vanadium redox flow battery[J]. J Power Sources, 2021, 506: 230203. [22]Li Q, Gao H, Zhao Y, et al. Covalent organic framework interlayer spacings as perfectly selective artificial proton channels[J]. Angew Chem Int Ed, 2024, 63(23): e202402094. [23]Xie G, Cui F, Zhao H, et al. Free-standing cof nanofiber in ion conductive membrane to improve efficiency of vanadium redox flow battery[J]. J Membr Sci, 2024, 708: 123052. [24]Xu W, Wang Y, Wu Y, et al. Sub-2-nm channels within covalent triazine framework enable fast proton-selective transport in flow battery membrane[J]. Adv Funct Mater, 2023, 33(21): 2300138. [25]Di M, Sun X, Hu L, et al. Hollow cof selective layer based flexible composite membranes constructed by an integrated “casting-precipitation-evaporation” strategy[J]. Adv Funct Mater, 2022, 32(22): 2111594. [26]Meng X, Peng Q, Wen J, et al. Sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery enabled by the incorporation of ionic liquid-covalent organic framework complex[J]. J Appl Polym Sci, 2023, 140(18): e53802. [27]Meng X, Peng Q, Peng L, et al. In situ growth of covalent organic framework on graphene oxide nanosheet enable proton-selective transport in flow battery membrane[J]. J Power Sources, 2024, 609: 234690. [28]Li J, Xu F, Chen Y, et al. Sulfonated poly(ether ether ketone)/sulfonated covalent organic framework composite membranes with enhanced performance for application in vanadium redox flow batteries[J]. ACS Appl Energ Mater, 2022, 5(12): 15856-15863. [29]Pang B, Du R, Chen W, et al. Self-supporting sulfonated covalent organic framework as a highly selective continuous membrane for vanadium flow battery[J]. Energy Storage Mater, 2024, 67: 103293. [30]Xu W, Xu J, Yi Z, et al. Zwitterionic channels within covalent organic frameworks facilitate proton-selective transport for flow battery membrane[J]. Chem Eng Sci, 2024, 299: 120468. [31]Zhang Y, Liu H, Liu M, et al. Enhanced selectivity of speek membrane incorporated covalent organic nanosheet crosslinked graphene oxide for vanadium redox flow battery[J]. J Membr Sci, 2025, 714: 123410. [32]Afzal, Ren Y, Wang S, et al. Highly proton-conductive and stable sulfonated covalent organic framework hybrid membrane for vanadium redox flow battery[J]. J Membr Sci, 2025, 722: 123863. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号