疏水/亲油性烷基SiO2/PTFE膜制备与油水分离性能研究
作者:彭倩倩12, 郭春刚1, 常娜2, 陈江荣1, 邵伟2, 孙玮1, 王海涛3, 刘国昌1
单位: 1. 自然资源部 天津海水淡化与综合利用研究所, 天津 300192; 2. 天津工业大学, 化学工程与技术学院, 天津 300387; 3. 天津工业大学, 环境科学与工程学院, 天津 300387
关键词: 烷基SiO2; PTFE膜; 疏水亲油; 油水分离
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.011
分类号: TQ316.6
出版年,卷(期):页码: 2025,45(4):104-112

摘要:
采用透油截水原理实现油水混合液或油水乳液的高效分离,需要制备超疏水/亲油性分离膜。利用真空抽滤法,将自制的烷基SiO2以浸涂液形式沉积于聚四氟乙烯(PTFE)膜,制得疏水/亲油性SiO2/PTFE膜(SP膜),并对SP膜的膜表面性能、油水分离性能进行了测试。结果表明,经烷基SiO2改性后的PTFE膜表面形成了微纳米粗糙结构,膜疏水/亲油性提升。当烷基SiO2沉积量为1 956 mg/m2时,其水接触角可达154°,油滴1 s内完全渗透。SP膜对正十六烷/水混合液的分离效率以及渗透通量随着油比例的提升而增大,油水质量比为3∶1时,对正十六烷分离效率98.31%,渗透通量(-0.09 MPa)为992 L/(m2·h);对正己烷/水、正癸烷/水、正十六烷/水以及Isopar G/水混合液的分离效率均达到98%以上,渗透通量(-0.09 MPa)分别为2 574、1 781、992和3 007 L/(m2·h);对正己烷、正十六烷油包水乳液的分离效率达到97%以上,渗透通量(-0.09 MPa)分别为512和230 L/(m2·h)。SP膜油水和乳液分离所得油相含水率均小于0.01%,10个周期循环使用后,SP膜对正十六烷/水混合液分离效率仍保持在96%以上、渗透通量衰减率小于7%,显示出优异的油水分离性能。
 
To achieve highly efficient separation of oil-water mixtures or oil-water emulsions with the principle of permitting oil passage while blocking water, it is necessary to prepare a superhydrophobic/lipophilic separation membrane. A hydrophobic/lipophilic SiO2/PTFE (SP) membrane  was fabricated by depositing a self-synthesized alkyl SiO2 impregnating solution onto a polytetrafluoroethylene (PTFE) substrate via vacuum filtration. The surface characteristics and oil-water separation performance of the SP membrane were systematically investigated. Results revealed that the alkyl SiO2-modified PTFE membrane exhibited a micro-nano hierarchical rough structure, which significantly enhanced its hydrophobicity and lipophilicity. At an alkyl SiO2 deposition amount of 1 956 mg/m2, the membrane achieved a water contact angle of 154°, with oil droplets fully permeating within 1 second. The SP membrane demonstrated enhanced separation efficiency and permeation flux  when processing n-hexadecane/water mixtures as the oil concentration increased. At an oil-water ratio of 3∶1(quality ratio), the separation efficiency for n-hexadecane reached 98.31%, with a permeation flux (-0.09 MPa) of 992 L/(m2·h). For various mixtures, including n-hexane/water, n-decane/water, n-hexadecane/water, and Isopar G/water, the    separation efficiencies of SP membrane   exceeded 98%. The corresponding permeation fluxes (-0.09 MPa) are 2 574, 1 781, 992, and 3 007 L/(m2·h), respectively. Additionally, when handling n-hexane and n-hexadecane oil-in-water emulsions, the separation efficiencies of SP membrane maintained  above 97%, with permeation fluxes (-0.09 MPa) of 512 and 230 L/(m2·h), respectively. The water content in the oil phase obtained through oil-water or emulsion separation using the SP membrane was below 0.01%. After undergoing 10 usage cycles, the SP membrane retained a separation efficiency greater than 96% for n-hexadecane/water mixtures, with a permeation flux attenuation rate of less than 7%, showcasing outstanding oil-water separation capabilities. 
 

基金项目:
中央级公益性科研院所基金(K-JBYWF-2024-QR-04,K-JBYWF-2024-ZT02,K-JBYWF-2022-T01)

作者简介:
彭倩倩(2000-),女,四川资阳人,硕士研究生,研究方向为多孔膜制备与改性技术

参考文献:
[1]Guo X Y, Zhao L, Li H N, et al. Janus channel of membranes enables concurrent oil and water recovery from emulsions[J].Science, 2024, 386(6722): 654-659.
[2]李子真.化工含油废水处理工艺探讨及工程应用[J].广东化工,2023,50(12):137-139.
[3]Yan X H, Xiao X, Au C, et al. Electrospinning nanofibers and nanomembranes for oil/water separation[J]. J Mater Chem A, 2021,9(38):21659-21684.
[4]刘亚丹,顾超,李玉宽,等.含油废水处理工艺与流程研究[J].工程抗震与加固改造,2024,46(2):184.
[5]席乔悦.TiO2半导体光催化剂在工业废水处理中的应用[J].广州化工,2022,50(19):26-27,48.
[6]张淇.含油污水的处理方法[J].辽宁化工,2024,53(11):1754-1757.
[7]宋春阳.纳米二氧化硅基超润湿膜的制备及其油水分离性能研究[D].大连:大连海事大学,2023.
[8]张少波,董延茂,王紫玥,等.特殊润湿性膜在油水分离中的应用进展[J].化工新型材料,2024,52(4):8-13.
[9]蔡鹏麟.超疏水/超亲油油水分离不锈钢网膜的制备及性能研究[D].天津:天津科技大学,2022.
[10]付锡涵.超疏水棉织物涂层的构建及其在油水分离中的应用[D].成都:四川大学,2021.
[11]刘兵,肖松,徐兵,等.基于纳米ZIF-8/ZnO构筑的超疏水涂层及其耐蚀抑菌性能[J].腐蚀与防护,2023,44(10):18-24.
[12]Barthlott W, Neinhuis C.Purity of the sacred lotus, or escape from contamination in biological surfaces[J].Planta,1997, 202: 1-8.
[13]Mao X H, Wang Y X, Yan X H, et al. A review of superwetting membranes and nanofibers for efficient oil/water separation[J].J Mater Sci,2023,58(1):3-33.
[14]Zuo J H, Chen J H, Wen X F, et al. Advanced materials for separation of oil/water emulsion[J]. Prog Chem, 2019,31(10):1440-1458.
[15]Zhang G, Yuan S S, Cao S J, et al. Functionalized poly(arylene ether sulfone) containing hydroxyl units for the fabrication of durable, superhydrophobic oil/water separation membranes[J]. Nanoscale, 2019,11(15):7166-7175.
[16]彭雨冰.超润湿油水分离膜的制备及其性能研究[D].武汉:湖北大学,2018.
[17]李青云.特殊浸润材料在油水分离中的应用研究[D].武汉:武汉纺织大学,2024.
[18]朱敬芳.特殊润湿材料的制备及其应用性能研究[D].南京:东南大学,2023. 
[19]仲大成.超浸润纳米纤维膜在油水分离中的应用研究[D].盐城:盐城工学院,2024.
[20]Zhu M, Liu Y, Chen M. Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification[J]. J Membr Sci, 2021, 640:119755.
[21]连衍成,梁富源,贺建超,等.超疏水聚四氟乙烯材料制备工艺的研究进展[J].中国腐蚀与防护学报,2023,43(2):231-241.
[22]邵伟,彭倩倩,郭春刚,等.烷基SiO2制备条件对PTFE膜疏水改性效果的影响[J].膜科学与技术,2024,44(6):64-70.
[23]车振宁,刘国昌,郭春刚,等.基于全氟硅烷/烷基SiO2协同效应的PTFE中空纤维膜表面超疏水改性研究[J].塑料工业,2020,48(7):19-23.
[24]孟晓林, 程坤坤, 张雨琪. Zn LDH-NFA超疏水亲油薄膜的构筑及性能研究[J]. 黑河学院学报, 2024, 15(10): 186-188.
[25]Jang S H, Jeong Y W, Shin H T J, et al. Digital light processing technique aided 3D printing hierarchical super wetting mesh coated with hydrophobic SiO2 for highly efficient oil-water separation[J]. J Ind Eng Chem, 2024, 134: 583-591.
[26]Jing L X, Zhang P Y, Chen Y M, et al. Preparation of superhydrophobic PDMS/DTMS-SiO2@PLA membrane for oil-water separation with three-dimensional layered porous structure by simple spraying[J]. Colloid Surface A, 2024, 688: 133601.
[27]Hosseinpour S, Gotz V, Peukert W. Effect of surfactants on the molecular structure of the buried oil/water interface[J]. Angew Chem Int Ed, 2021,60(47):25143-25150.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号