大孔径填料促进Pebax混合基质膜CO2/N2分离
作者:秦丹丹12, 王华浩2, 胡巧云12, 周永哲2, 刘红宇1, 代岩2, 贺高红2
单位: 1. 沈阳工业大学 石油化工学院, 辽阳 111003; 2. 大连理工大学 盘锦产业技术研究院, 辽宁省化学助剂合成与分离重点实验室, 盘锦 124221
关键词: 金属有机框架;Pebax-1657;混合基质膜;CO2分离;混气测试
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.012
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(4):113-123

摘要:
 为提升Pebax膜的CO2分离性能,通过大孔径结构构建低阻力气体传输通道,借助亲CO2基团确保气体分离的选择性。基于此,选用MIL-96作为填料制备混合基质膜(MMMs)并将其应用于CO2 分离。运用红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射(XRD)等对MIL-96和MMMs进行表征,考察填料添加量、操作温度和混合气等因素对膜气体分离性能的影响。结果表明,MIL-96在Pebax基质中分散良好,提高了对CO2 /N2的分离性能。在纯气与混气测试中,CO2渗透系数和CO2/N2选择性均随着添加量的增加呈现先上升后下降的趋势。在纯气测试条件下,MIL-96的质量分数为15%时性能最佳,CO2渗透系数和CO2/N2选择性分别达到了96.13 Barrer和77.70,相较于纯Pebax膜分别提升了36.96%和49.65%,接近Robeson上限,表明该MIL-96/Pebax MMMs在CO2分离上具有巨大潜能。
In order to improve the CO2 separation performance of Pebax membranes, a low-resistance gas transport channel was constructed through a large pore size structure, and the selectivity of gas separation was ensured by the CO2-philic group. Based on this, MIL-96 was selected as the filler to prepare mixed matrix membranes (MMMs) and applied to CO2 separation. MIL-96 and MMMs were characterized by infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD), etc. The effects of filler additions, operating temperatures and mixed gas on membrane gas separation performance were investigated by tests. The results showed that MIL-96 was well dispersed in Pebax matrix and improved the separation performance of CO2/N2. In both pure gas and mixed gas tests, the CO2 permeability coefficient and CO2/N2 selectivity showed a tendency of increasing and then decreasing with the addition amount. Under the pure gas test conditions, the best performance was achieved at 15% mass fraction of MIL96, and the CO2 permeability coefficient and CO2/N2 selectivity reached 96.13 Barrer and 77.70, respectively, which were 36.96% and 49.65% higher than that of the pure Pebax membranes, and were close to the upper limit of Robeson’s limit, suggesting that this MIL96/Pebax MMMs have great potential for CO2 separation. 
 

基金项目:
辽宁省兴辽英才计划(XLYC2402009); 辽宁省自然科学基金(2023-MS-353); 辽宁省化学助剂合成与分离重点实验室开放课题(ZJKF2304)

作者简介:
秦丹丹(2000-),女,山东济宁人,硕士研究生,主要研究方向为膜分离过程

参考文献:
[1]李卉, 王雨琪, 叶志镇, 等. 二维材料构筑的CO2分离膜研究进展[J]. 膜科学与技术, 2023, 43(06): 170-179.
[2]王同华, 李琳, 董军营, 等. 面向节能减排的新型炭基膜材料的创新设计与产业化开发[J]. 膜科学与技术, 2011, 31(3): 149-155.
[3]Yang K, Dai Y, Ruan X, et al. Stretched ZIF8@GO flake-like fillers via pre-Zn (Ⅱ)-doping strategy to enhance CO2 permeation in mixed matrix membranes[J]. J Membr Sci, 2020, 601(C):117934.
[4]王晓楠, 倪飞, 李海壮, 等. 构建界面兼容的PorPOF/PIM1混合基质膜用于CO2/N2高效分离[J]. 膜科学与技术, 2024,44(4): 170-177.
[5]郭飞. MOFs复合材料/Pebax混合基质膜制备及气体分离性能[D]. 大连:大连理工大学, 2022.
[6]Amooghin E A, Mashhadikhan S, Sanaeepur H, et al. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation[J]. Prog Mater Sci, 2019, 102: 222-235. 
[7]Chung T, Jiang Y L, Li Y, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Prog Polym Sci, 2007, 32(4):483-507.
[8]闫海龙, 高缨佳, 胡爱军, 等. 分离CO2的纳米材料/Pebax混合基质膜研究进展[J]. 膜科学与技术, 2021, 41(5): 174-182.
[9]方芳, 刘飞龙, 程喜全. MOFs基油水分离膜的研究进展[J]. 膜科学与技术, 2024, 44(5): 187-198.
[10]Hasan M R, Zhao P H, Steunou N, et al. Optimization of MIL178(Fe) and Pebax 3533 loading in mixed matrix membranes for CO2 capture[J]. Int J Gas Con, 2022, 121: 103-111.
[11]Song C, Li R, Fan Z, et al. CO2/N2 separation performance of Pebax/MIL101 and Pebax/ NH2MIL101 mixed matrix membranes and intensification via sub-ambient operation[J]. Sep Purif Technol, 2020, 238:116500.
[12]南江普, 董学良, 汪文进, 等. 金属有机骨架MIL96膜的制备和表征[J]. 南京工业大学学报(自然科学版), 2013, 35(1): 6-9.
[13]Chen S, Jin X, Wu Y, et al. Three-dimensionally oriented organization of hexagonal MIL96 microplates toward superior film microstructure[J]. Chin J Chem Eng, 2024, 72: 69-73.
[14]Zhao H Z, Xi Z H, Wang Q G, et al. Investigation on open water adsorption performance of multi-walled carbon nanotubes modified MIL-96(Al)[J]. J Solid State Chem, 2024, 334(12): 46-77.
[15]张楠通. 金属有机骨架材料MIL96的可控制备及其在除氟和储氢上的研究[D].合肥:中国科学技术大学, 2014.
[16]韦亚平. 聚乙烯基有机/无机复合薄膜的制备及性能研究[D]. 南京:东南大学, 2019.
[17]Guan W X,  Yang X C, Dong C Y, et al. Prestructured MXene fillers with uniform channels to enhance CO2 selective permeation in mixed matrix membranes[J]. J Appl Polym Sci, 2020, 138(8): 49895.
[18]Yang X C, Zheng  W J,  Xi Y, et al. Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2/N2 separation[J]. J Membr Sci, 2021, 624(1): 119046.
[19]Qiu M, Chen C, Li W. Rapid controllable synthesis of Al-MIL-96 and its adsorption of nitrogenous VOCs[J]. Catal Today, 2015, 258: 132-138.
[20]Loiseau T, Lecroq L, Volkringer C, et al. MIL96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units-art[J]. J Am Chem Soc, 2006, 31(2006): 10223-10230.
[21]Xiao Y, Huang H, Zhuang S, et al. Probing the sites on metal oxide cluster nodes of metal organic framework MIL96, MIL100 and MIL110[J]. Chem Eng J, 2024, 489:151380.
[22]Wag H H, Ding  Y P, Ning M J, et al.Amino-functional CPL-1 with abundant CO2-philic groups to enhance MMM-based CO2 separation[J]. Sep Purif Technol, 2023,322:124227.
[23]Habib N, Shamair Z, Tara N, et al. Development of highly permeable and selective mixed matrix membranes based on Pebax1657 and NOTT-300 for CO2 capture[J]. Sep Purif Technol, 2020, 234: 116101.
[24]丁亚萍. ZIF-93/Pebax混合基质膜的制备及CO2分离性能研究[D]. 沈阳:沈阳工业大学, 2023.
[25]Li X Q,  Cheng Y D, Zhang  H Y, et al. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Appl Mater Interfaces, 2015, 7(9): 5528-5537.
[26]Mosles S, Mozdianf M, Hemmati M, et al. Mixed matrix membranes of Pebax1657 loaded with iron benzene-1,3,5-tricarboxylate for gas separation[J]. Polym Compos, 2017, 38(7): 1363-1370. 
[27]Sainath K, Kumari P, Bellare J. Zeolitic imidazolate framework-8 nanoparticles coated composite hollow fiber membranes for CO2/CH4 separation[J]. J Environ Chem Engi, 2021, 9(5): 106-115.
[28]Wang H, Zheng  W J,  Yang X C, et al. Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation[J]. Sep Purif Technol, 2021, 274: 119-124.
[29]Wu H, Li X, Li Y, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM41 for enhanced gas separation properties[J]. J Membr Sci, 2014, 465: 78-90.
[30]Meshkat S, Kaliaguine S, Rodrigue D.  Mixed matrix membranes based on amine And non-amine MIL53(Al) in Pebax MH1657 for CO2 separation[J]. Sep Purif Technol, 2018, 200(12): 177-190.
[31]Duan K, Wang J, Zhang Y, et al. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation[J]. J Membr Sci, 2018, 572: 588-595.
[32]Shen J, Liu G, Huang K, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation[J]. J Membr Sci, 2016, 513: 155-162.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号