一种水系液流电池用聚苯并咪唑共混膜的设计
作者:曹海燕1, 王昭琪2, 高嘉明2, 谢烜煜2, 张林娟3, 王建强3, 周明东1
单位: 1. 沈阳化工大学 化学工程学院, 沈阳 110142; 2. 复旦大学 化学系, 上海 200438; 3. 中国科学院上海应用物理研究所 能源材料与化学研究部, 上海 201800
关键词: 聚苯并咪唑; 醋酸纤维素; 共混膜; 水系有机氧化还原液流电池
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.015
分类号: TQ425.23
出版年,卷(期):页码: 2025,45(4):143-151

摘要:
以具有刚性结构的聚苯并咪唑(PBI)为基体, 通过物理共混法将醋酸纤维素(CA)和聚乙烯吡咯烷酮(PVP)添加至基体中, 制备了不同CA/PVP(CP)含量的新型PBI基共混膜。结果表明, 以PVP作为造孔剂, 提高了膜的孔隙率, 而CA的加入会降低膜的溶胀率并增强膜的机械性能。综合分析不同CP添加比例的膜的相关性能(如机械性能、吸水溶胀率、面电阻和离子电导率等), CP添加比例为2.5%的PBI共混膜在化学性能上最为优异,综合性能具备一定的优势。在以2,6-二羟基蒽醌(2,6-DHAQ)和亚铁氰化钾{K4[Fe(CN)6]}为活性物质的碱性水系有机氧化还原液流电池(AORFBs)中, 组装有2.5%CP-PBI膜的AORFB最大功率密度可达159 mW/cm2, 在80 mA/cm2电流密度下能量效率达82.8%, 优于组装有商用Nafion117膜的AORFB。此外, 该系统在500次充放电循环中表现出优异的稳定性, 容量衰减率仅为0.000 6%。
 
A novel polybenzimidazole (PBI)-based blended membrane was fabricated by physically blending cellulose acetate (CA) and polyvinylpyrrolidone (PVP) with the rigid-structured PBI matrix. PVP acted as a pore-forming agent, increasing membrane porosity, while the incorporation of CA reduced swelling and enhanced mechanical strength. A comprehensive evaluation of membranes properties,including mechanical properties, water uptake, swelling ratio, area resistance and ionic conductivity, revealed that the PBI blended membrane with 2.5% CP exhibited the most favorable electrochemical performance and the overall performance had certain advantages. When applied in an alkaline aqueous organic redox flow battery (AORFB) using 2,6-dihydroxyanthraquinone (2,6-DHAQ) and potassium ferrocyanide {K4[Fe(CN)6]} as active species, the AORFB assembled with the 2.5%CPPBI membrane achieved a maximum power density of 159 mW/cm2 and an energy efficiency of 82.8% at a current density of 80 mA/cm2, outperforming the commercial Nafion117 membrane. Moreover, the system demonstrated excellent cycling stability, with a capacity decay rate of only 0.000 6% over 500 charge-discharge cycles. 
 

基金项目:
中国科学院前瞻战略科技先导专项(XDA0400000)资助

作者简介:
曹海燕(2000-), 女, 山东潍坊人, 硕士研究生, 主要从事离子交换膜制备与性能研究

参考文献:
[1]Park G, Eun S, Lee W, et al. Polybenzimidazole membrane based aqueous redox flow batteries using anthraquinone-2,7-disulfonic acid and vanadium as redox couple[J]. J Power Sources, 2023, 569: 233015.
[2]Bui T T, Shin M, Abbas S, et al. Sulfonated para-polybenzimidazole membranes for use in vanadium redox flow batteries[J]. Adv Energy Mater, 2024: 2401375.
[3]Ye C, Tan R, Wang A, et al. Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes[J]. Angew Chem Int Ed, 2022, 61(38): e202207580.
[4]Zhai L, Zhu Y L, Wang G, et al. Ionic-nanophase hybridization of Nafion by supramolecular patching for enhanced proton selectivity in redox flow batteries[J]. Nano Lett, 2023, 23(9): 3887-3896.
[5]Service R F. Advances in flow batteries promise cheap backup power[J]. Science, 2018, 362(6414): 508-509.
[6]Hu B, DeBruler C, Rhodes Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. J Am Chem Soc, 2017, 139(3): 1207-1214.
[7]Ding Y, Zhang C, Zhang L, et al. Molecular engineering of organic electroactive materials for redox flow batteries[J]. Chem Soc Rev, 2018, 47(1): 69-103.
[8]Fu Y, Howard A, Zeng C, et al. Physics-guided continual learning for predicting emerging aqueous organic redox flow battery material performance[J]. ACS Energy Lett, 2024, 9(6): 2767-2774.
[9]彭康, 左培培, 杨正金, 等. 面向水系有机液流电池的离子交换膜[J]. 膜科学与技术, 2023, 43(6): 98-111.
[10]Wang A, Breakwell C, Foglia F, et al. Selective ion transport through hydrated micropores in polymer membranes[J]. Nature, 2024, 635(8038): 353-358.
[11]Aili D, Yang J, Jankova K, et al. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides[J]. J Mater Chem A, 2020, 8(26): 12854-12886.
[12]Wu J, Liao C, Li T, et al. Metal-coordinated polybenzimidazole membranes with preferential K+ transport[J]. Nat Commun, 2023, 14(1): 1149.
[13]Ikhsan M M, Abbas S, Do X H, et al. Sulfonated polystyrene/polybenzimidazole bilayer membranes for vanadium redox flow batteries[J]. Adv Energy Mater, 2024: 2400139.
[14]Lu W, Yuan Z, Zhao Y, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Mater, 2018, 10: 40-47.
[15]Yang T, Shi G M, Chung T S. Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/Polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures[J]. Adv Energy Mater, 2012, 2(11): 1358-1367.
[16]Muhmed S A, Nor N A M, Jaafar J, et al. Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: A review[J]. Energy Ecol Environ, 2020, 5(2): 85-107.
[17]Palanisamy G, Sadhasivam T, Park W S, et al. Tuning the ion selectivity and chemical stability of a biocellulose membrane by PFSA ionomer reinforcement for vanadium redox flow battery applications[J]. ACS Sustainable Chem Eng, 2020, 8(4): 2040-2051.
[18]王小舟. 聚苯并咪唑基阴离子交换膜的离子通道构建 [D]. 大连: 大连理工大学, 2022.
[19]Wang Z, Zhang S, Liu Q, et al. Preparation and characterization of the side-chain quaternized poly(phthalazinone ether ketone)s with phenyl groups for vanadium redox flow battery[J]. J Membr Sci, 2021, 633: 119416.
[20]Tan R, Wang A, Malpass-Evans R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nat Mater, 2020, 19(2): 195-202.
[21]Zuo P, Ye C, Jiao Z, et al. Near-frictionless ion transport within triazine framework membranes[J]. Nature, 2023, 617(7960): 299-305.
[22]Zavastin D, Cretescu I, Bezdadea M, et al. Preparation, characterization and applicability of cellulose acetate-polyurethane blend membrane in separation techniques[J]. Colloid Surf A-Physicochem Eng Asp, 2010, 370(1): 120-128.
[23]Mehta P, Vedachalam S, Sathyaraj G, et al. Fast sensing ammonia at room temperature with proline ionic liquid incorporated cellulose acetate membranes[J]. J Mol Liq, 2020, 305: 112820.
[24]Song X, Ding L, Wang L, et al. Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries[J]. Electrochim Acta, 2019, 295: 1034-1043.
[25]Kumar V, Mondal S, Nandy A, et al. Analysis of polybenzimidazole and polyvinylpyrrolidone blend membranes as separating barrier in single chambered microbial fuel cells[J]. Biochem Eng J, 2016, 111: 34-42.
[26]Zuo P, Li Y, Wang A, et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage[J]. Angew Chem Int Ed, 2020, 59(24): 9564-9573.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号