碱性水电解复合膜超声加速降解策略研究
作者:邹鹏1, 董中民1, 连文水1, 刘湛1, 邹永玲2, 李洋洋3, 周贤杰2
单位: 1. 五邑大学 机械与自动化工程学院, 广东省摩托车先进设计与制造工程技术研究中心, 江门市高分子材料智能制造重点实验室, 江门 529020; 2. 江门职业技术学院 智能制造与装备学院, 江门 529090; 3. 清华大学 汽车安全与节能国家重点实验室, 北京 100084
关键词: 碱性水电解; 复合隔膜; 耐久性测试; 超声空化效应; 加速老化方法
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.016
分类号: TQ028.8; TK91
出版年,卷(期):页码: 2025,45(4):152-161

摘要:
针对复合隔膜的耐久性测试周期长、成本高的问题,本研究提出一种基于超声空化效应的聚砜-氧化锆复合隔膜非原位加速老化方法,旨在建立一种快速评估其性能退化的方法。通过调控超声功率(0~100 W)模拟实际衰减过程,结合微观表征、氧中氢浓度(HTO)和孔径分析,揭示超声功率对隔膜降解的加速机制。结果表明:低功率超声(20~60 W)主要引发ZrO2(氧化锆)脱落和聚砜(PSf)骨架以碎片化形式脱落,导致HTO平缓增长,膜降解进程平缓,与原位衰减初期性能稳定阶段相对应;高功率超声(80~100 W)则促使PSf骨架断裂并形成贯通孔洞,致使阻气性能骤降,HTO急剧上升,与原位衰减后期性能骤降现象一致。Pearson相关性分析显示超声加速数据与实际衰减数据的相关系数达0.973,相关性较强,传统测试所需的3 200 h降解过程可缩短至1 h以内,该方法能够快速并且有效地复现复合隔膜在实际使用中衰减的多阶段特征。
 
Aiming at the long cycle and high cost of durability testing of composite membranes, this study proposed a non-in situ accelerated aging method for polysulfone-zirconia composite membranes based on the ultrasonic cavitation effect with the aim of establishing a rapid assessment of the degradation of their performance. The actual decay process was simulated by modulating the ultrasonic power (0~100 W), which was combined with microscopic characterization, hydrogen concentration in oxygen (HTO) and pore size analysis to reveal the accelerated mechanism of ultrasonic power on the degradation of the membrane. The results showed that low power ultrasonic (20~60 W) mainly triggered the detachment of ZrO2 and PSf skeleton in the form of fragmentation, resulting in a gentle increase in HTO and membrane degradation, which corresponded to the stable stage of the early stage of in-situ degradation; while the high power ultrasonic (80~100 W) induced the fracture of PSf skeleton and the formation of through-hole, which resulted in the sudden decrease of gas barrier performance and the sharp increase of HTO, which was consistent with the performance of drop in the late stage of in-situ degradation. Pearson correlation analysis showed that the correlation coefficient between the ultrasonic acceleration data and the actual degradation data was 0.973, which was a strong correlation, and the degradation process of 3 200 hours required by the traditional test could be shortened to less than 1 hour, which was a fast and effective way to reproduce the characteristics of the multi-stage of composite membrane degradation in actual use.
 

基金项目:
江门市基础与理论科学研究类科技计划项目(2024030001680011415)

作者简介:
邹鹏(1993-),男,湖南娄底人,讲师,博士,从事智能储能装备研究、水电解制氢隔膜制备

参考文献:
[1]于贵瑞, 郝天象, 朱剑兴.中国碳达峰、碳中和行动方略之探讨[J].中国科学院院刊, 2022, 37(4):423-434.
[2]Notton G, Nivet M L, Voyant C, et al. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting[J]. Renew Sust Energ Rev, 2018, 87:96-105. 
[3]Khalid M. Smart grids and renewable energy systems: Perspectives and grid integration challenges[J]. Energy Strateg Rev, 2024, 51:101299. 
[4]Zhang L, Jia C, Bai F, et al. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies[J]. Fuel, 2024, 355:129455. 
[5]Yue M, Lambert H, Pahon E, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges[J]. Renew Sust Energ Rev, 2021, 146:111180. 
[6]施海燕, 毛翎.石棉的健康危害及安全使用研究进展[J].上海预防医学杂志, 2009, 21(3):125-127,134.
[7]Henkensmeier D, Cho W C, Jannasch P, et al. Separators and membranes for advanced alkaline water electrolysis[J]. Chem Rev, 2024, 124(10):6393-6443. 
[8]Renaud R, LeRoy R L. Separator materials for use in alkaline water electrolysers[J]. Int J Hydrogen Energ, 1982, 7(2):155-166. 
[9]Rahate A S, Nemade K R, Waghuley S A. Polyphenylene sulfide (PPS): State of the art and applications[J]. Rev Chem Eng, 2013, 29(6):471-489. 
[10]Groot M T, Vreman A W. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm[J]. Electrochim Acta, 2021, 369:137684. 
[11]Vermeiren P H, Leysen R, Beckers H, et al. The influence of manufacturing parameters on the properties of macroporous ZirfonTM separators[J]. J Porous Mat, 2008, 15(3):259-264. 
[12]Schalenbach M, Lueke W, Stolten D. Hydrogen diffusivity and electrolyte permeability of the Zirfon PERL separator for alkaline water electrolysis[J]. J Electrochem Soc, 2016, 163(14):F1480. 
[13]Lee H I, Cho H S, Kim S K, et al. Polymer-ceramic composite diaphragm for reducing dissolved hydrogen permeability in alkaline water electrolysis[J]. J Electrochem Soc, 2020,2(38):2404.
 [14]Lee J W, Lee C, Lee J H, et al. Cerium oxide-polysulfone composite separator for an advanced alkaline electrolyzer[J]. Polymers-Basel, 2020, 12(12):2821. 
[15]Lee H I, Mehdi M, Kim S K, et al. Advanced Zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode[J]. J Membr Sci, 2020, 616:118541. 
[16]Pei  P, Meng Y, Chen D, et al. Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law[J]. Energy, 2023, 265:126341.
 [17]Becker H, Murawski J, Shinde D V, et al. Impact of impurities on water electrolysis: A review[J]. Sustain Energ Fuels, 2023, 7(7):1565-1603. 
[18]Pearson K. Determination of the coefficient of correlation[J]. Science, 1909, 30(761):23-25.
[19]Vermeiren P, Adriansens W, Leysen R. ZirfonTM: A new separator for NiH2 batteries and alkaline fuel cells[J]. Int J Hydrogen Energ, 1996, 21(8):679-684. 
[20]Guo M, Song W, Tang Y, et al. Effect of porous irregular ZrO2 nanoparticles on the performance of alkaline water electrolysis composite separator membranes under complex conditions[J]. J Membr Sci, 2025, 713:123332.
[21]Xing Y, Li H, Avgouropoulos G. Research progress of proton exchange membrane failure and mitigation strategies[J]. Materials, 2021, 14(10):2591. 
[22]Haug P, Koj M, Turek T. Influence of process conditions on gas purity in alkaline water electrolysis[J]. Int J Hydrogen Energ, 2017, 42(15):9406-9418. 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号