| 超亲水聚酰亚胺纳米纤维膜的制备及其性能研究 |
| 作者:赵静钰1, 贾丰玮1, 张瑛洁1,2, 程喜全1,2, 王凯1,2 |
| 单位: 1. 哈尔滨工业大学(威海) 海洋科学与技术学院, 威海 264209; 2. 山东中欧膜技术研究有限公司, 威海 264209 |
| 关键词: 超亲水; 纳米纤维膜; 油水分离; 静电纺丝 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.017 |
| 分类号: TQ028.8 |
| 出版年,卷(期):页码: 2025,45(4):162-172 |
|
摘要: |
|
膜分离技术作为一种高效的含油废水处理方法,在油水分离领域展现出显著优势。然而,该技术的规模化应用受到膜材料性能的限制,主要体现在渗透通量不足和抗污染性能欠佳等方面。本研究采用静电纺丝技术制备出聚酰亚胺(PI)纳米纤维膜,然后涂覆γ氨丙基三乙氧基硅烷(KH-550)和多巴胺(DA)制得超亲水纳米纤维膜,用于水包油乳液的超快分离。实验结果显示,通过表面亲水改性及表面涂覆KH-550的方法,可有效协同构筑具有微纳米亲水结构的超亲水聚酰亚胺纳米油水分离膜。通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、接触角测量仪(CA)等表征手段,详细分析了膜的表面形貌、化学组成及润湿性能,验证了其超亲水特性。经测试改性后的膜接触角为(8±1) °,并具有优异的抗污染性能,水下油接触角为(155±1) °,水滴通过膜的时间在0.5 s以内。膜的水通量为18 705 L/(m2·h·MPa),对正辛烷乳液的油水分离效率达到了99.4%,实现了优良的超亲水性能,在水包油乳液中实现油水分离方面具有广阔的应用前景。 |
|
Membrane separation technology, as an efficient method for treating oily wastewater, has shown significant advantages in the field of oil-water separation. However, the large-scale application of this technology is limited by the performance of membrane materials, mainly manifested in insufficient permeation flux and poor anti-pollution performance. In this paper, polyimide (PI) nanofiber membranes were prepared by electrospinning technology, and then coated with γ-glycidoxypropyltrimethoxysilane (KH550) and dopamine to obtain superhydrophilic nanofiber membranes for ultrafast separation of oil-in-water emulsions. The experimental results showed that through surface hydrophilic modification and surface coating with KH550, superhydrophilic polyimide nanofiber oil-water separation membranes with micro-nano hydrophilic structures could be effectively constructed. The surface morphology, chemical composition and wetting properties of the membrane were analyzed in detail by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle meter (CA) and other characterization methods, verifying its superhydrophilic characteristics. The contact angle of the modified membrane was 8°±1°, and it had excellent anti-pollution performance, with an underwater oil contact angle of 155°±1° and a water droplet passing time through the membrane within 0.5 s. The water flux of the membrane was 18 705 L/(m2·h·MPa), and the oil-water separation efficiency for n-octane emulsion reached 99.4%, achieving excellent superhydrophilic performance and showing strong application prospects in the separation of oil-in-water emulsions. |
|
基金项目: |
| 山东省重点研发计划(竞争性创新平台)项目(2023CXPT068) |
|
作者简介: |
| 赵静钰(1999-),女,云南蒙自人,硕士研究生,主要从事纳米纤维膜制备及性能研究 |
|
参考文献: |
| [1]Wang X, Yu J, Sun G, et al. Electrospun nanofibrous materials: A versatile medium for effective oil/water separation[J]. Materials, 2016, 19(7): 403-414. [2]Mark A S, Paul W B, Menachem E, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452 (7185): 301-310. [3]Ling S J, Qin Z, Huang W W, et al. Design and function of biomimetic multilayer water purification membranes[J]. Sci Advances, 2017, 3(4): 1601939. [4]Padaki M, Murali R S, Abdullah M S, et al. Membrane technology enhancement in oil-water separation. A review[J]. Desalination, 2015, 357: 197-207. [5]You H, Jin Y Z, Chen J C, et al. Direct coating of a DKGM hydrogel on glass fabric for multifunctional oil-water separation in harsh environments[J]. Chem Eng J, 2018, 334: 2273-2282. [6]Ariana M A Vítor J P, Vilar M S, et al. Optimization of a primary gravity separation treatment for vegetable oil refinery wastewaters[J]. Clean Technol Environ, 2014, 16(8): 1725-1734. [7]Sato M, Sumita I. Experiments on gravitational phase separation of binary immiscible fluids[J]. J Fluid Mech, 2007, 591: 289-319. [8]Ramaswamy B, Kar D D, De S. A study on recovery of oil from sludge containing oil using froth flotation[J]. J Environ Manage, 2007, 85(1): 150-154. [9]Etchepare R H, Oliveira A, Azevedo J R. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J] Sep Purif, 2017, 186: 326-332. [10]Wang X, Wang Q H, Wang S J, et al. Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge[J]. Bioresour Technol, 2012,111: 308-315. [11]Roberts P, Thomas K. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment[J]. Sci Total Environ, 2006, 356(1/2/3): 143-153. [12]赵元元. 聚偏氟乙烯超亲水膜的制备与油水分离性能研究[D]. 哈尔滨:哈尔滨工业大学, 2023. [13]Zhang J Y, Fang W X, Zhang F, et al. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation[J]. J Membr Sci, 2020, 608: 118201- 118247. [14]陈新宇. 超亲水膜材料的制备及其在乳液分离中的应用[D]. 苏州:苏州大学, 2020. [15]李艳芳. PAM/TiO2改性制备三种超亲水膜及其油水分离性能[J]. 塑料, 2021, 50 (4): 43-47. [16]Song H M, Chen C, Shui X X, et al. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation[J]. J Membr Sci, 2019, 573: 126-134. [17]唐鹏程. 防污超亲水膜的设计制备及在乳液分离和染料降解中的应用[D]. 武汉:湖北大学, 2024. [18]张子旭, 杨景, 林立刚, 等. 基于纤维素凝胶层修饰的高通量分离膜及其染料/盐分离性能[J]. 膜科学与技术, 2024, 44(6): 71-77. [19]高鹏举. 超疏水聚酰亚胺纳米纤维膜制备及油水分离研究[D]. 哈尔滨:哈尔滨工业大学, 2022. [20]王振兴. 基于多巴胺的聚偏氟乙烯膜表面亲水化改性及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2017. [21]汪祺, 邓雪松, 郑甜甜, 等. 仿蜘蛛网结构油水分离膜的制备和性能探索[J]. 膜科学与技术, 2021, 41(2): 9-17. [22]李玉懂, 张晶, 李妍妍, 等. 基于多巴胺亲水改性的聚丙烯中空纤维膜及油水分离性能研究[J]. 膜科学与技术, 2024, 44(5): 20-31. [23]杨思民, 王建强, 刘富. 油水分离膜研究进展[J].膜科学与技术, 2019, 39(3): 132-141. [24]常晓晶. 仿生材料多巴胺对聚偏氟乙烯超滤膜改性的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. [25]Lee M W, An S, Latthe S S, et al. Electrospun polystyrene nanofiber membrane with superhydro-phobicity and superoleophilicity for selective separation of water and low viscous oil[J].ACS Appl Mater Inter, 2013, 5(21):10597-10604. [26]Ma R H, Lu X L, Kong X, et al. A method of controllable positive-charged modification of PVDFCTFE membrane surface based on C-Cl active site[J]. J Membr Sci, 2021, 620: 118936. [27]Park E J, Park B C, Kim Y J, et al. Elimination and substitution compete during amination of poly(vinyl chloride) with ehtylenediamine: XPS analysis and approach of active site index[J]. Macromol Res, 2018, 26(10): 913-923. [28]黄子为, 霍虹懿, 龙科, 等. 聚多巴胺涂覆的磺丁基醚β环糊精开管毛细管电色谱柱的制备及应用[J]. 分析试验室, 2024, 43(4): 497-501. [29]Wang Z X, Lau C H, Zhang N Q, et al. Mussel-inspired tailoring of membrane wettability for harsh water treatment[J]. J Mater Chem A, 2015, 3: 2650-2657. [30]Xu Y C, Wang Z X, Cheng X Q, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chem Eng J, 2016, 303:555-564. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号