| 一种疏水性MOF涂层不锈钢网的制备及其油水分离性能研究 |
| 作者:石荣雪1, 刘克成1, 张立军1 , 孙墨杰2, 祖文轩2 |
| 单位: 1. 国网河北省电力有限公司电力科学研究院, 石家庄 050021; 2. 东北电力大学 化学工程学院, 吉林 132012 |
| 关键词: 超疏水膜; 油水分离; 金属有机框架 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.018 |
| 分类号: X703; TQ028 |
| 出版年,卷(期):页码: 2025,45(4):173-181 |
|
摘要: |
|
本研究提出了一种简单的方法制备疏水性金属有机框架(MOF)涂层不锈钢网(SSM),用于高效油水分离。首先,通过多巴胺自聚在不锈钢网表面形成聚多巴胺(PDA)层,随后通过一步水热法将疏水性MOF(UiO-66)生长在PDA层上,并使用十六烷基三甲氧基硅烷(HDTMS)进行疏水修饰,最终获得HDTMS/UiO-66@PDA/SSM超疏水膜。该膜的水接触角达到150.7°,表现出优异的疏水性和自清洁性能。油水分离实验表明,该膜在重力驱动下对多种油水混合物的分离效率在98%以上,油通量最高可达38 216.6 L/(m2·h)。此外,该膜在不同pH环境下表现出良好的稳定性,经过20次循环使用后,分离效率仍保持在96%以上。研究表明,该疏水膜具有高效、稳定和可重复使用的特点,在油水分离方面具有很高的应用价值。 |
|
A simple method for preparing hydrophobic metal-organic frame (MOF) coated stainless steel mesh (SSM) for efficient oil-water separation was proposed in this paper. Firstly, a polydopamine (PDA) layer was formed on the surface of stainless steel mesh by dopamine self-polymerization. Then, the hydrophobic MOF (UiO66) was grown on the PDA layer by one-step hydrothermal method, and the hydrophobic modification was carried out with hexadecyltrimethoxylsilane (HDTMS). Finally, the HDTMS/UiO66@PDA/SSM superhydrophobic membrane was obtained. The membrane had a water contact angle of 150.7°, showing excellent hydrophobicity and self-cleaning properties. The oil-water separation experiments showed that the separation efficiency of the membrane was more than 98% and the oil flux was as high as 38 216.6 L/(m2·h). In addition, the membrane showed good stability in different pH environments, and the separation efficiency remained above 96% after 20 cycles of use. The results show that the hydrophobic membrane possesses the characteristics of high efficiency, stability and reusability, and has excellent application value in oil-water separation. |
|
基金项目: |
| 国家电网有限公司科技项目资助(kj2024-042) |
|
作者简介: |
| 石荣雪 (1989-),女,河北柏乡人,博士,高级工程师,主要从事电力用油性能检测与分析技术研究 |
|
参考文献: |
| [1]Swathi A C, Chandran M. Facile fabrication of gC3N4/Bi2S3 coated melamine foam for oil/water separation applications[J]. RSC Advances, 2024, 14(49): 36132-36141. [2]陈彰旭, 孟凡莉, 张丽丹, 等. 磁性ZIF8/石墨烯气凝胶制备及油水分离性能[J]. 高分子材料科学与工程, 2024, 40(4): 137-146. [3]卢浩, 刘懿谦, 代品一, 等. 油水强化分离技术[J]. 化工进展, 2020, 39(12): 4954-4962. [4]Yu J, Cao C, Pan Y. Advances of adsorption and filtration techniques in separating highly viscous crude oil/water mixtures[J]. Adv Mater Interfaces, 2021, 8(16): 2100061. [5]Qin H, Zhou H, Guo W, et al. Reversal of wettability of carbon cloth by microwave-assisted modification technology for efficient oil-water separation application[J]. Surf Coat Technol, 2021, 419: 127260. [6]蒋亮, 冯绍桐, 王宝, 等. 金属网基油水分离材料的制备与应用[J]. 塑料, 2024, 53(5): 98-102. [7]张少波, 董延茂, 王紫玥, 等. 特殊润湿性膜在油水分离中的应用进展[J]. 化工新型材料, 2023, 52(4): 8-13. [8]刘云鹏, 杨清海, 石白茹, 等. 仿生超疏水材料在石油化工中的应用进展[J]. 油田化学, 2023, 40(2): 374-379. [9]Peng X,Xu T, Ma W,et al. A new way to construct multifunctional superhydrophobic coating and applications in anti-corrosion, self-cleaning, membrane distillation and water/oil separation[J]. J Environ Chem Eng, 2024, 12(5): 113782. [10]Wei Y B,Xie Z X,Qi H,et al.Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation[J]. J Membr Sci, 2020, 601: 117842. [11]Jing L X,Zhang P Y,Chen Y M,et al.Preparation of superhydrophobic PDMS/DTMSSiO2@PLA membrane for oil-water separation with three-dimensional layered porous structure by simple spraying[J]. Colloids Surf A, 2024, 688: 133601. [12]Wang B, Feng S, Wang C, et al. Nanostructure-based oil-water separation: Mechanism and status[J]. Separations, 2023, 10(11): 569. [13]刘帅卓, 张骞, 刘宁, 等. 三聚氰胺海绵的一步式协同超疏水改性及在油水分离中的应用[J]. 高等学校化学学报, 2020, 41(3): 521-529. [14]梁格, 黄翔峰, 刘婉琪, 等. 超疏水三维多孔材料在乳化液油水分离中的应用研究进展[J]. 化工进展, 2022, 41(12): 6557-6572. [15]Khosravi M, Azizian S, Boukherroub R. Efficient oil/water separation by superhydrophobic CuxS coated on copper mesh[J]. Sep Purif Technol, 2019, 215: 573-581. [16]Mashael A M,Joel M M,Gennaro D,et al.Modification of polyethylene for oil-water separation in industrial wastewater treatment[J]. J Environ Chem Eng, 2024, 12(5): 114067. [17]Du J,Zhang C, Pu H, et al. HKUST-1 MOFs decorated 3D copper foam with superhydrophobicity/superoleophilicity for durable oil/water separation[J]. Colloids Surf A, 2019, 573: 222-229. [18]Zhang X, Li K, Li X, et al. Facile preparation of durable superhydrophobic DTMS@HKUST1 wood membrane for continuous oil-water separation in harsh conditions[J]. Surf Interfaces, 2024, 44: 103778. [19]He Z, Wu H, Shi Z, et al. Mussel-inspired durable superhydrophobic/superoleophilic MOFPU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties[J]. Colloids Surf A, 2022, 648: 129142. [20]Lai C, Liu Y, Yang Q, et al. Wrinkled microsphere-modified superhydrophobic PTFE fibrous substrate for high-flux oil-water emulsion separation[J]. Sep Purif Technol, 2025, 363: 132006. [21]He W, Liu Y, Huang Z, et al. Cubic MOF coated stainless steel mesh with underwater superoleo-phobicity for highly efficient oil/water separation[J]. Mater Chem Phys, 2023, 297: 127346. [22]Zhu M, Liu Y, Chen M, et al. Metal mesh-based special wettability materials for oil-water separation: A review of the recent development[J]. J Petrol Sci Eng, 2021, 205: 108889. [23]Meng G, Yan J, Wu J, et al. Thiol-ene click chemistry construct superhydrophobic cotton fabric for high-efficiency water-in-oil emulsion separation[J]. Fibers Polym, 2020, 21(2): 245-251. [24]Huang Y, Jiao Y, Chen T, et al. Tuning the wettability of metal-organic frameworks via defect engineering for efficient oil/water separation[J].ACS Appl Mater Interfaces, 2020, 12(30): 34413-34422. [25]Majdoub M, Essamlali Y, Amadine O, et al. Octadecylamine as chemical modifier for tuned hydrophobicity of surface modified cellulose: Toward organophilic cellulose nanocrystals[J]. Cellulose, 2021, 28(12): 7717-7734. [26]Zhang N, Zhang X, Gan C, et al. Heterostructural Ag3PO4/UiO66 composite for highly efficient visible-light photocatalysts with long-term stability[J]. J Photochem Photobiol A, 2019, 376: 305-315. [27]Zhang C, Ou Y, Lei W X, et al. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angew Chem, 2016, 128(9). |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号