| 单体扩散控制界面聚合制备聚酰胺薄层复合纳滤膜研究进展 |
| 作者:刘佳欢1,2, 王建强2,3, 刘富2,3 |
| 单位: 1.宁波大学 材料科学与化学工程学院,宁波 315211; 2.中国科学院 宁波材料技术与工程研究所, 宁波 315201;3. 中国科学院大学 宁波材料工程学院, 宁波 315201 |
| 关键词: 界面聚合; 单体扩散; 聚酰胺; 纳滤膜 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.020 |
| 分类号: TQ028 |
| 出版年,卷(期):页码: 2025,45(4):194-205 |
|
摘要: |
|
纳滤以其分离效率高、操作温和、适应范围广等特点,在缓解全球水资源危机方面一直备受关注。聚酰胺薄层复合纳滤膜是目前应用最广泛的纳滤膜产品,其分离性能主要受聚酰胺分离层性质影响。界面聚合是目前聚酰胺分离层的通用制备方法,但该反应过程存在反应速率快和结构难调控的问题。近年来,国内外研究学者在可控界面聚合制备聚酰胺薄层复合纳滤膜方面开展了大量研究工作。单体扩散控制是一种简单、高效、易于放大化生产的方法,成为该领域的研究热点。本文介绍了近年来针对单体扩散控制界面聚合制备聚酰胺薄层复合纳滤膜的研究进展,旨在揭示单体扩散控制对聚酰胺分离层结构和分离性能的影响规律,并为聚酰胺薄层复合纳滤膜的应用提供参考。 |
|
Nanofiltration, characterized by its high efficiency, mild operation, and strong adaptability, has always attracted much attention in alleviating the global water crisis. Thin-film composite polyamide nanofiltration membrane is the most applied nanofiltration membrane product. Its separation performance is mainly affected by the properties of the polyamide separation layer. Interfacial polymerization is the commonly used method for fabricating polyamide separation layer. However, the rapid reaction rate and difficulty for structure manipulation are the key problems in this method. Recent years, many works have been developed for the fabricating thin-film composite polyamide nanofiltration membrane. Monomer diffusion control is a simple, effective and scalable strategy for solving the above problem. This article presents the research progress in recent years on the preparation of nanofiltration membranes by regulating the monomer diffusion, aiming to revealing the mechanism for its effect on structure control and separation performances. It also tends to provide references for the application of laboratory membrane fabrication in practical scenarios. |
|
基金项目: |
| 浙江省领雁研发计划“高效选择性纳滤膜材料研发与应用”[2024C03284(SD2)] |
|
作者简介: |
| 刘佳欢(2000-),女,山东菏泽人,硕士研究生,主要从事纳滤膜制备及其性能研究 |
|
参考文献: |
| [1]Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. [2]Pendergast M M, Hoek E M V. A review of water treatment membrane nanotechnologies[J]. Energy Environ Sci, 2011, 4(6): 1946-1971. [3]Zhao Y, Tong T, Wang X, et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: A review[J]. Environ Sci Technol, 2021, 55(3): 1359-1376. [4]Abdel-Fatah M A. Nanofiltration systems and applications in wastewater treatment: Review article[J]. Ain Shams Eng J, 2018, 9(4): 3077-3092. [5]Gohil J M, Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination[J]. Sep Purif Technol, 2017, 181: 159-182. [6]Cadotte J E, King R S, Majerle R J, et al. Interfacial synthesis in the preparation of reverse osmosis membranes[J]. J Macromol Sci A, 1981, 15(5): 727-755. [7]Wang K, Wang X, Januszewski B, et al. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships[J]. Chem Soc Rev, 2022, 51(2): 672-719. [8]Lu X, Elimelech M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions[J]. Chem Soc Rev, 2021, 50(11): 6290-6307. [9]Yang Z, Guo H, Tang C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. J Membr Sci, 2019, 590: 117297. [10]Geise G M, Park H B, Sagle A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. J Membr Sci, 2011, 369(1): 130-138. [11]Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chem Soc Rev, 2016, 45(21): 5888-5924. [12]付欣宇,王建强,计艳丽,等. 不对称双层聚酰胺纳滤膜的制备及其性能研究[J]. 膜科学与技术, 2023, 43(5): 50-57. [13]Liu Y, Liu L, Narendra B, et al. Advancing high-performance nanofiltration membranes: Tailoring monomer molecular design to enhance diffusion-reaction synergy in interfacial polymerization[J]. Desalination, 2025, 598: 118415. [14]Baig U, Waheed A, Ahmad H, et al. Synthesis of methyl 3,5-diaminobenzoate to develop polyamide thin film composite membrane for investigating the impact of in-situ methyl hydrolysis on its permeate flux and sulfate rejection[J]. Sep Purif Technol, 2025: 132178. [15]Chen H, Zhao F, Zhang X, et al. Design an in-situ anti-bacterial structure of nanofiltration membrane with a novel bisimidazoline aqueous monomer[J]. J Membr Sci, 2024, 707: 122992. [16]Peng H, Yu K, Liu X, et al. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes[J]. Nat Commun, 2023, 14(1): 5483. [17]Wang K, Fu W, Wang X, et al. Molecular design of the polyamide layer structure of nanofiltration membranes by sacrificing hydrolyzable groups toward enhanced separation performance[J]. Environ Sci Technol, 2022, 56(24): 17955-17964. [18]Zhang Y, Wang H, Guo J, et al. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes[J]. Science, 2023, 382(6667): 202-206. [19]Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. [20]Karan S, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. [21]Li J, Yuan S, Zhu J, et al. High-flux, antibacterial composite membranes via polydopamine-assisted PEITiO2/Ag modification for dye removal[J]. Chem Eng J, 2019, 373: 275-284. [22]Freger V, Srebnik S. Mathematical model of charge and density distributions in interfacial polymerization of thin films[J]. J Appl Polym Sci, 2003, 88(5): 1162-1169. [23]Werber J R, Deshmukh A, Elimelech M. The critical need for increased selectivity, not increased water permeability, for desalination membranes[J]. Environ Sci Technol Lett, 2016, 3(4): 112-120. [24]Ma Z, Zhang X, Liu C, et al. Polyamide nanofilms synthesized via controlled interfacial polymerization on a “jelly” surface[J]. Chem Commun, 2020, 56(53): 7249-7252. [25]Cheng X, Lai C, Li J, et al. Toward enhancing desalination and heavy metal removal of TFC nanofiltration membranes: A cost-effective interface temperature-regulated interfacial polymerization[J]. ACS Appl Mater Interfaces, 2021, 13(48): 57998-58010. [26]鲁艺文,吕晓龙,任凯,等. 多羟基单体调控分离层结构制备高性能净水用纳滤膜[J]. 膜科学与技术, 2024, 44(5): 108-116. [27]Xin J, Fan H, Guo B, et al. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes[J]. Chem Commun, 2023, 59(89): 13258-13271. [28]Wittbecker E L, Morgan P W. Interfacial polycondensation. Ⅰ[J]. J Polym Sci, 1959, 40(137): 289-297. [29]李文远,吕晓龙,任凯,等. 中间层构建及其反渗透复合膜性能的探讨[J]. 膜科学与技术, 2024, 44(5): 150-155. [30]Yang Z, Zhou Z, Guo H, et al. Tannic Acid/Fe3+ nanoscaffold for interfacial polymerization: Toward enhanced nanofiltration performance[J]. Environ Sci Technol, 2018, 52(16): 9341-9349. [31]Zhao W, Liu H, Liu Y, et al. Thin-film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube[J]. ACS Appl Mater Interfaces, 2018, 10(40): 34464-34474. [32]Wei S, Ding X, Qiu Y, et al. Enhanced performance polyamide membrane by introducing high-porosity SOD/GO composite interlayer to tailor the interfacial polymerization process[J]. Chem Eng J, 2024, 481: 148595. [33]Wu M B, Lyu Y, Yang H C, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. J Membr Sci, 2016, 515: 238-244. [34]Gong G, Wang P, Zhou Z, et al. New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane[J]. ACS Appl Mater Interfaces, 2019, 11(7): 7349-7356. [35]Wang J, Yang H, Wu M, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. J Mater Chem A, 2017, 5(31): 16289-16295. [36]Zhang X, Lv Y, Yang H, et al. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance[J]. ACS Appl Mater Interfaces, 2016, 8(47): 32512-32519. [37]Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chem Soc Rev, 2012, 41(18): 6010-6022. [38]Fu J, Das S, Xing G, et al. Fabrication of COFMOF composite membranes and their highly selective separation of H2/CO2[J]. J Am Chem Soc, 2016, 138(24): 7673-7680. [39]杜海洋, 张文娟, 温书,等. 基于金属有机骨架(MOFs)的纳滤膜制备研究现状[J]. 膜科学与技术, 2022, 42(2): 154-162. [40]Yuan J, Wu M, Wu H, et al. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes[J]. J Mater Chem A, 2019, 7(44): 25641-25649. [41]Wang Z, Wang Z, Lin S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nat Commun, 2018, 9(1): 2004. [42]Dai R, Li J, Wang Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review[J]. Adv Colloid Interface Sci, 2020, 282: 102204. [43]Ren X, Wang L, Fu H, et al. Interfacial polymerization process based on diffusion control: Role of chemical composition and morphology on fouling resistance[J]. J Environ Chem Eng, 2023, 11(5): 110511. [44]Liu B, Wang S, Zhao P, et al. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment[J]. Appl Surf Sci, 2018, 435: 415-423. [45]Shen L, Cheng R, Yi M, et al. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving[J]. Nat Commun, 2022, 13(1): 500. [46]Lee J, Wang R, Bae T H. A comprehensive understanding of co-solvent effects on interfacial polymerization: Interaction with trimesoyl chloride[J]. J Membr Sci, 2019, 583: 70-80. [47]Wang Y, Chang H, Jiang S, et al. An efficient co-solvent tailoring interfacial polymerization for nanofiltration: Enhanced selectivity and mechanism[J]. J Membr Sci, 2023, 677: 121615. [48]Ye Y, Qiu N, Qiu Z, et al. Acetone extraction induced piperazine diffusion reaction for regulating thin film composite nanofiltration membrane[J]. J Membr Sci, 2024, 694: 122426. [49]Dong K, Liu X, Dong H, et al. Multiscale studies on ionic liquids[J]. Chem Rev, 2017, 117(10): 6636-6695. [50]Ben-Zvi A, Taqui Syed U, Ramon G Z, et al. Alternative materials for interfacial polymerization: recent approaches for greener membranes[J]. Green Chem, 2024, 26(11): 6237-6260. [51]Liu C, Yang J, Guo B, et al. Interfacial polymerization at the alkane/ionic liquid interface[J]. Angew Chem Int Edit, 2021, 60(26): 14636-14643. [52]Liang Y, Zhu Y, Liu C, et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 precision separation[J]. Nat Commun, 2020, 11(1): 2015. [53]Peng Q, Wang R, Zhao Z, et al. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane[J]. Nat Commun, 2024, 15(1): 2505. [54]Droudian A, Youn S K, Wehner L A, et al. Enhanced chemical separation by freestanding CNT-polyamide/imide nanofilm synthesized at the vapor-liquid interface[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19305-19310. [55]Paseta L, Echaide-Górriz C, Téllez C, et al. Vapor phase interfacial polymerization: A method to synthesize thin film composite membranes without using organic solvents[J]. Green Chem, 2021, 23(6): 2449-2456. [56]Li W, Yang Z, Yang W, et al. Vapor-phase polymerization of high-performance thin-film composite membranes for nanofiltration[J]. AlChE J, 2022, 68(2): e17517. [57]Ignacz G, Bader L, Beke A K, et al. Machine learning for the advancement of membrane science and technology: A critical review[J]. J Membr Sci, 2025, 713: 123256. [58]Dangayach R, Jeong N, Demirel E, et al. Machine learning-aided inverse design and discovery of novel polymeric materials for membrane separation[J]. Environ Sci Technol, 2025, 59(2): 993-1012. [59]Gao W, Wang G, Li J, et al. Insights into synthesis and optimization features of reverse osmosis membrane using machine learning[J]. Materials, 2025, 18(4): 840. [60]Li H, Xu S, Wang B, et al. A new insight into the effects of DMF solvent activation on the polyamide layers of nanofiltration membranes by molecular simulation[J]. J Membr Sci, 2025, 718: 123667. [61]Liu G, Wei M, Li D, et al. Understanding interfacial polymerization in the formation of polyamide RO membranes by molecular simulations[J]. Desalination, 2024, 586: 117869. [62]Geng H, Huo X, Jing Z, et al. Monitoring the process of interfacial polymerization for fabrication of polyamide reverse osmosis membrane via molecular simulation based on ππ interaction between surfactant and monomer[J]. J Membr Sci, 2025, 713: 123369. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号