原位沉积法制备氢取代石墨二炔膜及纳滤性能研究
作者:杨星达, 范红玮, 孟 洪
单位: 1. 北京化工大学 化学工程学院, 北京 100029; 2. 新疆大学 化学学院, 乌鲁木齐 830017
关键词: 氢取代石墨二炔; 石墨炔复合膜; 原位合成; 纳滤; 染料脱除
DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.001
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(5):1-8

摘要:
石墨炔因其规整有序的纳米级孔结构和丰富的表面电荷,是制备高精度纳滤膜的理想材料。然而,石墨炔膜的规模化快速制备仍存在挑战。本研究以三乙炔苯(TEB)为单体,在乙醇溶剂中通过均相反应合成氢取代石墨二炔(HsGDY),并将其原位沉积至聚丙烯腈(PAN)基底表面,仅用5 h制得了HsGDY-PAN复合膜。通过多种表征手段研究了膜的表面形貌、分子结构、官能团组成、亲水性以及荷电性。探究了不同单体浓度对复合膜纳滤性能的影响,并考察了膜的长期运行稳定性。结果表明,当TEB单体浓度为0.6 g/L时,膜的纳滤性能最佳,对刚果红分子截留率高达99.10%,渗透通量为128.7 L/(m2·h·MPa);对甲基蓝、铬黑T、阿利新蓝的截留率分别为98.25%、98.88%、99.04%,渗透通量通量均在100 L/(m2·h·MPa)以上。在80 h的循环稳定性实验中,膜的截留率和渗透通量没有明显衰减。
 
  Graphdiyne is an ideal material for the fabrication of high-precision nanofiltration membranes due to its ordered nano-scale pore structure and abundant surface charge. However, challenges remain in the scalable and rapid preparation of graphdiyne membranes. In this study, hydrogen-substituted graphdiyne (HsGDY) was synthesized via a homogeneous reaction using triethynylbenzene (TEB) as the monomer in an ethanol solvent, followed by in situ deposition onto a polyacrylonitrile (PAN) substrate. The HsGDY-PAN composite membrane was successfully fabricated within merely 5 hours. Multiple characterization techniques were employed to investigate the membrane’s surface morphology, molecular structure, functional group composition, hydrophilicity and surface charge characteristics. The effects of monomer concentration on the nanofiltration performance and a long-term durability in cross-flow nanofiltration were systematically evaluated. Results demonstrated that the membrane exhibited optimal nanofiltration performance at a TEB monomer concentration of 0.6 g/L, achieving a rejection rate of 99.10% for congo red with a permeate flux of 128.7 L/(m2· h·MPa). For methyl blue, chrome black T and alcian blue, rejection rates reached 98.25%, 98.88% and 99.04%, respectively, while maintaining permeate fluxes exceeding 100 L/(m2· h·MPa). During cyclic stability tests of 80 hours, no significant variations in rejection rates or permeate fluxes were observed. 
 

基金项目:
中央高校基本科研业务费专项资金(buctrc202508);国家自然基金区域创新发展联合基金(U23A20688)

作者简介:
杨星达(1998-),男,山东泰安人,博士研究生,研究方向为石墨炔分离膜的制备及纳滤性能.

参考文献:
[1]Tang J Y M, Busetti F, Charrois J W A, et al. Which chemicals drive biological effects in wastewater and recycled water[J]. Water Res, 2014, 60: 289-299.
[2]VanLoosdrecht M C M, Brdjanovic D. Anticipating the next century of wastewater treatment[J]. Science, 2014, 344(6191): 1452-1453.
[3]Grant S B, Saphores J D, Feldman D L, et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability[J]. Science, 2012, 337(6095): 681-686.
[4]Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254.
[5]Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
[6]王胜智,吴克宏,张跃峰,等. 纳滤膜技术及其应用[J]. 能源研究与信息, 2005, 21(2): 106-111.
[7]Cheng S, Oatley D L, Williams P M, et al. Positively charged nanofiltration membranes: review of current fabrication methods and introduction of a novel approach[J].Adv Colloid Interface Sci,2011,164(1/2):12-20.
[8]刘鸣华,李玉良.石墨炔:从合成到应用[J]. 物理化学学报,2018,34(9):959-960.
[9]Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chem Comm, 2010, 46(19): 3256-3258.
[10]Yu H, Xue Y, Li Y. Graphdiyne and its assembly architectures: synthesis, functionalization, and applications[J]. Adv Mater, 2019, 31(42): 1803101.
[11]Klappenberger F, Zhang Y Q, Bjrk J, et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes[J]. Acc Chem Res, 2015, 48(7): 2140-2150.
[12]Ghosh S, Kouamé N A, Ramos L, et al. Conducting polymer nanostructures for photocatalysis under visible light[J]. Nat Mater, 2015, 14(5): 505-511.
[13]Wang F, Zuo Z, Li L, et al. Large-area aminated-graphdiyne thin films for direct methanol fuel cells[J]. Angew Chem Int Ed, 2019, 131(42): 15152-15157.
[14]Shang H, Zuo Z, Li L, et al. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes[J]. Angew Chem Int Ed, 2018, 57(3): 774-778.
[15]Srinivasu K, Ghosh S K. Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications[J]. J Phys Chem C, 2012, 116(9): 5951-5956.
[16]Shen J, Cai Y, Zhang C, et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes[J]. Nat Mater, 2022, 21(10): 1183-1190.
[17]Yang X D, Qu Z, Li S, et al. Ultra-fast preparation of large-area graphdiyne-based membranes via alkynylated surface-modification[J]. Angew Chem Int Ed, 2023,135: e202217378.
[18]Li J, Zhou K, Liu Q, et al.Author correction: Synthesis of two-dimensional ordered graphdiyne membranes for highly efficient and selective water transport[J]. Nat Water, 2025: 307-318.
[19]Zhou J, Li J, Liu Z, et al. Exploring approaches for the synthesis of few-layered graphdiyne[J]. Adv Mater, 2019, 31(42): 1803758. 
[20]Zhou J, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. J Am Chem Soc, 2015, 137(24): 7596-7599.
[21]Lu C, Yang Y, Wang J, et al. High-performance graphdiyne-based electrochemical actuators[J]. Nat Commun, 2018, 9(1): 752.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号