| 聚碳硅烷诱导的复合陶瓷膜的制备及其油水分离研究 |
| 作者:张 迪, 贾海琦, 朱家明, 张昭乾, 李 星,刘怀珠, 廖明佳, 龚耿浩 |
| 单位: 1. 天津工业大学 材料科学与工程学院, 先进分离膜材料全国重点实验室, 天津 300387; 2. 重庆化工职业学院 化学工程学院, 重庆 401228; 3. 冀东油田唐山冀油瑞丰化工有限公司, 唐山 063500 |
| 关键词: 陶瓷膜; 聚碳硅烷; 油水分离; 相转化/烧结 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.003 |
| 分类号: TQ028.8 |
| 出版年,卷(期):页码: 2025,45(5):19-32 |
|
摘要: |
| 针对传统陶瓷膜制备工艺复杂、能耗高、分离性能受限等关键问题,本研究提出一种基于聚碳硅烷(PCS)衍生陶瓷与相转化/烧结工艺协同优化的复合陶瓷膜制备策略。以聚砜(PSf)为聚合物基质,氧化铝(Al2O3)为基体材料,PCS为陶瓷前驱体,通过优化N-甲基吡咯烷酮/四氢呋喃(NMP/THF)混合溶剂体系,构建铸膜液。在1 450 ℃烧结过程中,PCS热解生成的二氧化硅(SiO2)与Al2O3原位反应形成莫来石(3Al2O3·2SiO2)晶相,该晶相显著改善了膜材料的微观结构和力学性能。本研究系统探究了溶剂配比及凝固浴组成对膜性能的影响。研究表明,在不同凝固浴条件下制备的复合陶瓷膜具有以下显著优势:具有多孔结构特征;高孔隙率(52%~73%),优异的抗压强度(18.5~38.2 MPa)以及孔径可调控(90~320 nm);在处理1 000 mg/L油水乳液时,展现出卓越的分离性能[渗透率13 240~20 540 L/(m2·h·MPa),除油率98.1%~99.4%];具有突出的抗污染性能,经简易化学清洗即可实现90%的通量恢复率。相较于传统纯Al2O3膜,最优条件下制备的PCS-Al2O3复合陶瓷膜在孔隙率提升54%的同时,抗压强度并未发生明显衰减,其力学性能与纯Al2O3膜相当,成功突破了传统陶瓷膜“高孔隙率与高强度难以兼得”的技术瓶颈。 |
| To address the critical challenges of complex fabrication processes, high energy consumption, and limited separation performance in conventional ceramic membranes, this study proposed a novel composite ceramic membrane fabrication strategy based on synergistic optimization of polycarbosilane (PCS)-derived ceramics and phase inversion/sintering processes. Using polysulfone (PSf) as the polymer matrix, alumina (Al2O3) as the base material, and PCS as the ceramic precursor, a casting solution by optimizing the N-methyl-pyrrolidone/tetrahydrofuran (NMP/THF) mixed solvent system was developed. During sintering at 1 450 ℃, the silica (SiO2) generated from PCS pyrolysis reacts in situ with Al2O3 to form mullite (3Al2O3·2SiO2) crystals, which significantly enhanced the microstructure and mechanical properties of the membrane material. This study systematically investigated the effects of solvent composition and coagulation bath conditions on membrane performance. The results demonstrated that the composite ceramic membranes prepared under various coagulation bath conditions exhibited the following outstanding advantages: porous structure characteristics with high porosity (52%~73%) and excellent compressive strength (18.5~38.2 MPa), along with tunable pore sizes (90~320 nm);exceptional separation performance for 1 000 mg/L oil-in-water emulsions [permeance: 13 240~20 540 L/(m2·h·MPa),oil rejection: 98.1%~99.4%]; and remarkable antifouling properties, achieving 90% flux recovery through simple chemical cleaning. Compared to pure Al2O3 membrane, the PCS-Al2O3 composite ceramic membrane fabricated under optimized conditions exhibited a 54% increase in porosity while its compressive strength did not significantly degrade, maintaining mechanical performance comparable to that of pure Al2O3 membranes, successfully overcoming the technical challenge in conventional ceramic membranes of balancing high porosity with high mechanical strength. |
|
基金项目: |
| 重庆市教委科学技术研究计划项目(KJQN202404521); 长寿区科技计划项目(CSKJ2024010) |
|
作者简介: |
| 张迪(1998-),男,山东威海人,硕士研究生,研究方向为油水分离陶瓷膜 |
|
参考文献: |
| [1]Cai Q, Zhu Z, Chen B, et al. Oil-in-water emulsion breaking marine bacteria for demulsifying oily wastewater[J]. Water Res, 2019, 149:292-301. [2]Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. J Mater Chem A, 2017, 5(31):16025-16058. [3]尹延梅, 吴秀丽, 柯永文, 等. 膜法液压油过滤净化技术研究[J]. 膜科学与技术, 2021, 41(5):139-145. [4]魏逸彬, 朱涛涛, 姬文兰, 等. 固体废弃物助烧的多孔SiC陶瓷膜支撑体研究进展[J]. 硅酸盐学报, 2023, 51(12):3215-3226. [5]Wang Y, Tang J, Low Z X, et al. Multiscale super-amphiphobic ceramic membrane for oil aerosol removal[J]. J Membr Sci, 2022, 642:119996. [6]Zou D, Xu J, Chen X, et al. A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment[J]. Sep Purif Technol, 2019, 219:127-136. [7]Jedidi I, Khemakhem S, Sadi S, et al. Preparation of a new ceramic microfiltration membrane from mineral coal fly ash: Application to the treatment of the textile dying effluents[J]. Powder Technol, 2011, 208(2):427-432. [8]Wu H, Sun C, Huang Y, et al. Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models[J]. Water Res, 2022, 211:118042. [9]Lee K H, Kim Y M. Asymmetric hollow inorganic membranes[J]. Key Eng Mater, 1992, 61/62:17-22. [10]Lalia B S, Kochkodan V, Hashaikeh R, et al. A review on membrane fabrication: Structure, properties and performance relationship[J]. Desalination, 2013, 326:77-95. [11]Ahmad T, Rehman L M, Al-Nuaimi R, et al. Thermodynamics and kinetic analysis of membrane: Challenges and perspectives[J]. Chemosphere, 2023, 337:139430. [12]Tao H, Rigoni C, Li H, et al. Thermodynamically controlled multiphase separation of heterogeneous liquid crystal colloids[J]. Nat Commun, 2023, 14(1):5277. [13]Coelho L L, Luccio M D, Hotza D, et al. Tailoring asymmetric Al2O3 membranes by combining tape casting and phase inversion[J]. J Membr Sci, 2021, 623:119056. [14]Yu L, Kanezashi M, Nagasawa H, et al. Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater[J]. J Membr Sci, 2020, 595:117477. [15]Zhu L, Chen M, Dong Y, et al. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion[J]. Water Res, 2016, 90:277-285. [16]Yu Q, Zhu J, Gong G, et al. Efficient preparation of ultrathin ceramic wafer membranes for the high-effective treatment of the oilfield produced water[J]. Sep Purif Technol, 2023, 308:122720. [17]Wang J, Liu T, Lu C, et al. Efficient oil-in-water emulsion separation in the low-cost bauxite ceramic membranes with hierarchically oriented straight pores[J]. Sep Purif Technol, 2022, 303:122244. [18]Wang X, Sun K, Zhang G, et al. Robust zirconia ceramic membrane with exceptional performance for purifying nano-emulsion oily wastewater[J]. Water Res, 2022, 208:117859. [19]Nishihora R K, Rudolph E, Quadri M G N, et al. Asymmetric mullite membranes manufactured by phase-inversion tape casting from polymethylsiloxane and aluminum diacetate[J]. J Membr Sci, 2019, 581:421-429. [20]Miao M, Liu T, Bai J, et al. Engineering the wetting behavior of ceramic membrane by carbon nanotubes via a chemical vapor deposition technique[J]. J Membr Sci, 2022, 648:120357. [21]Fonto N C, Wilhelm M, Rezwan K. Asymmetric polysiloxane-based SiOC membranes produced via phase inversion tape casting process[J].Mater Des, 2021, 198:109328. [22]乔玉林, 薛胤昌, 刘军, 等. 聚合物先驱体材料体系的陶瓷化研究进展与展望[J]. 材料导报, 2016, 30(11):1-6. [23]Fu S, Zhu M, Zhu Y. Organosilicon polymer-derived ceramics: An overview[J]. J Adv Ceram, 2019, 8(4):457-478. [24]Guettari M, Gharbi A. A model to study the behavior of a polar polymer in the mixture of polar solvents[J]. J Macromol Sci, Part B:Phys, 2010, 49(3):592-601. [25]董黎明, 王仁丽, 陈浩. 浊度滴定法估算杂萘联苯聚芳醚腈三维溶解度参数[J]. 广州化工, 2014, 42(18):99-102. [26]Qiu J, Albrecht J, Janey J. Synergistic solvation effects: Enhanced compound solubility using binary solvent mixtures[J]. Org Process Res Dev, 2019, 23(7):1343-1351. [27]Yong H, Sommer J U. Cononsolvency effect: When the hydrogen bonding between a polymer and a cosolvent matters[J]. Macromol, 2022, 55(24):11034-11050. [28]Su D, Li Y L, An H J, et al. Pyrolytic transformation of liquid precursors to shaped bulk ceramics[J]. J Eur Ceram Soc, 2010, 30(6):1503-1511. [29]Tanaka S, Doi A, Nakatani N, et al. Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system[J]. Carbon, 2009, 47(11):2688-2698. [30]Yousef S, Eimontas J, Striügas N, et al. Pyrolysis kinetic behavior and TG-FTIR-GC-MS analysis of end-life ultrafiltration polymer nanocomposite membranes[J]. Chem Eng J, 2022, 428:131181. [31]Goh P S, Ng B C, Lau W J, et al. Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment[J]. Sep Purif Rev, 2015, 44(3):216-249. [32]Lu A H, Spliethoff B, Schüth F. Aqueous synthesis of ordered mesoporous carbon via self-assembly catalyzed by amino acid[J]. Chem Mater, 2008, 20(16):5314-5319. [33]Kumagai S, Sato M, Ma C, et al. A comprehensive study into the thermo-oxidative degradation of sulfur-based engineering plastics[J]. J Anal Appl Pyrolysis, 2022, 168:105754. [34]Kim T E, Khishigbayar K E, Cho K Y. Effect of heating rate on the properties of silicon carbide fiber with chemical-vapor-cured polycarbosilane fiber[J]. J Adv Ceram, 2017, 6(1):59-66. [35]Yu Y, Guo Y, Cheng X, et al. Pyrolysis behavior of titanium-containing polycarbosilane in air[J]. J Inorg Organomet Polym Mater, 2010, 20(4):714-719. [36]Li H, Zhang L, Cheng L, et al. Effect of the polycarbosilane structure on its final ceramic yield[J]. J Eur Ceram Soc, 2008, 28(4):887-891. [37]Ishikawa T. Photocatalytic fiber with gradient surface structure produced from a polycarbosilane and its applications[J]. Int J Appl Ceram Technol, 2004, 1(1):49-55. [38]Hasegawa Y, Feng C X, Song Y C, et al. Ceramic fibres from polymer precursor containing Si-O-Ti bonds[J]. J Mater Sci, 1991, 26(13):3657-3664. [39]Hasegawa Y. Synthesis of continuous silicon carbide fibre[J]. J Mater Sci, 1989, 24(4):1177-1190. [40]Cao J, Zhang H, Xu W, et al. Poly(vinylidene fluoride) porous membranes precipitated in water/ethanol dual-coagulation bath: The relationship between morphology and performance in vanadium flow battery[J]. J Power Sources, 2014, 249:84-91. [41]Tuan W H, Chen J R, Ho C J. Critical zirconia amount to enhance the strength of alumina[J]. Ceram Int, 2008, 34(8):2129-2135. [42]Deng X, Yang F, Ma J, et al. Ternary phase field model and characterization of water/NMP/polysulfone membrane prepared by non-solvent induced phase separation[J]. Sep Purif Technol, 2024, 330:125307. [43]Liu H, Liu J, Hong Z, et al. Preparation of hollow fiber membranes from mullite particles with aid of sintering additives[J].J Adv Ceram,2021,10(1):78-87. [44]Vinoth Kumar R, Kumar Ghoshal A, Pugazhenthi G. Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment[J]. J Membr Sci, 2015, 490:92-102. [45]Chen N, Chen S, Yin H, et al. Durable underwater super-oleophobic/super-hydrophilic conductive polymer membrane for oil-water separation[J]. Water Res, 2023, 243:120333. [46]Dong B B, Wang F H, Yang M Y, et al. Polymer-derived porous SiOC ceramic membranes for efficient oil-water separation and membrane distillation[J]. J Membr Sci, 2019, 579:111-119. [47]Gao J, Qiu M, Chen X, et al. One-step sintering for anti-fouling piezoelectric α-quartz and thin layer of alumina membrane[J]. J Membr Sci, 2023, 667:121188. [48]Gao Y, Xu G, Zhao P, et al. One step co-sintering synthesis of gradient ceramic microfiltration membrane with mullite/alumina whisker bi-layer for high permeability oil-in-water emulsion treatment[J]. Sep Purif Technol, 2023, 305:122400. [49]Liu G, Yang Y, Liu H, et al. Preparation of disc ceramic membrane by a printing and dip-coating method for oil-water separation[J]. Sep Purif Technol, 2023, 315:123552. [50]Liu M, Zhu Z, Zhang Z, et al. Development of highly porous mullite whisker ceramic membranes for oil-in-water separation and resource utilization of coal gangue[J]. Sep Purif Technol, 2020, 237:116483. [51]Mao H, Zhou S, Qiu M, et al. Piezoceramic membrane equipped with superwetting interface and in-situ ultrasound performance for efficient oil/water emulsion separation[J]. Desalination, 2023, 555:116545. [52]Rashad M, Ligesh G, Sabu U, et al. A novel monolithic mullite microfiltration membrane for oil-in-water emulsion separation[J]. J Membr Sci, 2021, 620:118857. [53]Wang X, Sun K, Zhang G, et al. Robust zirconia ceramic membrane with exceptional performance for purifying nano-emulsion oily wastewater[J]. Water Res, 2022, 208:117859. [54]Wu H, Sun C, Huang Y, et al. Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models[J]. Water Res, 2022, 211:118042. [55]Baig U, Waheed A. An efficient and simple strategy for fabricating a polypyrrole decorated ceramic-polymeric porous membrane for purification of a variety of oily wastewater streams[J]. Environ Res, 2023, 219:114959. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号