氮化硼纳米通道膜内水传输的分子动力学模拟
作者:吴锦文, 朱志豪, 康国栋,曹义鸣
单位: 1. 安庆师范大学 化学化工学院, 安庆 246133; 2. 中国科学院大连化学物理研究所, 大连 116023
关键词: 氮化硼; 水传输; 取向; 分子动力学
DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.004
分类号: TQ028; O647
出版年,卷(期):页码: 2025,45(5):33-41

摘要:
水资源污染和短缺问题日益严重,研发高效、可持续的膜法水处理技术受到人们的广泛关注。近年来,一维纳米管由于优异的水传输性能成为研究热点。本研究采用分子动力学(MD)模拟方法,从水分子的数量密度、结构和取向等方面探究了不同氮化硼纳米管(BNNTs)中水的传输特性。模拟结果显示,相同条件下,以氮原子作为入口端的锯齿型BNNT(19,0)的水通量最小,水分子在BNNTs内会发生不规则的取向翻转且会通过增大键角来促进传输。其次,在孔径不同的纳米通道内,孔径越小,水分子越需要较大的平均取向角和键角以促进传输。而且在一定条件下,长膜更有利于水传输。温度越高,水分子在入口处堆积越少,从而促进水传输,此外,增大压强,水通量也增大。
 
 Water pollution and scarcity are becoming increasingly severe, driving significant attention to the development of efficient and sustainable membrane-based water treatment technologies. In recent years, one-dimensional nanotubes have emerged as a research hotspot due to their exceptional water transport properties. In this study, molecular dynamics (MD) simulations were employed to investigate the water transport characteristics in different boron nitride nanotubes (BNNTs) by analyzing the number density, structure and orientation of water molecules. The simulation results showed that, under the same conditions, the water flux of the zigzag BNNT (19,0) with nitrogen atoms as the inlet end was the smallest. Water molecules will undergo irregular orientation inversion within BNNTs and promote transport by increasing the bond angle. Furthermore, in nanochannels with different pore sizes, smaller pore diameters required water molecules to adopt larger average orientation angles and bond angles to enhance transport. And under certain conditions, long membranes were more conducive to water transmission. Simulations were conducted over a temperature range of 280 K to 360 K, higher temperatures reduced the accumulation of water molecules at the entrance, thereby enhancing water transport. In addition, increasing the pressure also raised the water flux. 
 

基金项目:
安徽省教育厅自然科学项目(20230062, 2023AH040071)

作者简介:
吴锦文(2000-),女,山西临汾人,硕士研究生,主要研究方向为一维纳米通道内水传输的分子模拟

参考文献:
[1]Shahbabaei M, Elawadly R, Khodadadi J M, et al. Desalination performance investigation of TpPa-1 COF and MIL-47(Ⅴ) MOF bilayer membranes using molecular dynamics simulation[J]. Desalination, 2024, 576: 117315.
[2]Mistry S, Pillai R, Mattia D, et al. Untangling the physics of water transport in boron nitride nanotubes[J]. Nanoscale, 2021, 13(43): 18096-18102.
[3]Radha B, Esfandiar A, Wang F C, et al. Molecular transport through capillaries made with atomic-scale precision[J]. Nature, 2016, 538(7624): 222-225.
[4]Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. 
[5]Ortiz-Medina J, Inukai S, Araki T, et al. Robust water desalination membranes against degradation using high loads of carbon nanotubes[J]. Sci Rep, 2018, 8(1): 2748.
[6]Xu T, Zhang K, Cai Q, et al. Advances in synthesis and applications of boron nitride nanotubes: A review[J]. Chem Eng J, 2022, 431: 134118.
[7]Zhang L, Li J, Peng G, et al. Charge-tunable water transport through boron nitride nanotubes[J]. J Mol Liq, 2018, 258: 98-105. 
[8]Kim J H, Pham T V, Hwang J H, et al. Boron nitride nanotubes: Synthesis and applications[J]. Nano convergence, 2018, 5: 1-13. 
[9]Won C Y, Aluru N R. Water permeation through a subnanometer boron nitride nanotube[J]. J Am Chem Soc, 2007, 129(10): 2748-2749. 
[10]Won C Y, Aluru N R. Structure and dynamics of water confined in a boron nitride nanotube[J]. J Phys Chem C, 2008, 112(6): 1812-1818.
 [11]Hilder T A, Gordon D, Chung S H. Salt rejection and water transport through boron nitride nanotubes[J]. Small, 2009, 5(19): 2183-2190. 
[12]Liang L, Li J C, Zhang L, et al. Computer simulation of water desalination through boron nitride nanotubes[J]. Phys Chem Chem Phys, 2017, 19(44): 30031-30038.
[13]Kumar S, Govind Rajan A. Predicting quantum-mechanical partial charges in arbitrarily long boron nitride nanotubes to accurately simulate nanoscale water transport[J]. J Chem Theory Comput, 2024, 20(8): 3298-3307. 
[14]Sahu P, Ali S M. Studies on continuum breakdown and water transport behavior of nanotubes for water purification: Impact of temperature, nanotube material, and diameter[J]. ACS Appl Nano Mater, 2024, 7(8): 9228-9243.
[15]武海顺, 贾建峰. 氮化硼纳米管的研究进展[J]. 化学进展, 2004, 16(1): 6-14.
[16]Mayo S L, Olafson B D, Goddard W A. Dreiding: A generic force field for molecular simulations[J]. J Phys Chem, 1990, 94(26): 8897-8909.
[17]Salavati M, Ghasemi H, Rabczuk T. Electro-mechanical properties of boron nitride nanotube: Atomistic bond potential and equivalent mechanical energy approach[J]. Comput Mater Sci, 2018, 149: 460-465.
[18]Azamat J, Sardroodi J J, Mansouri K, et al. Molecular dynamics simulation of transport of water/DMSO and water/acetone mixtures through boron nitride nanotube[J]. Fluid Phase Equilib, 2016, 425: 230-236.
[19]Lyu B, Wang M, Jiang J, et al. Molecular design of covalent-organic framework membranes for Li+/Mg2+ separation: Significant charge effect[J]. J Membr Sci, 2022, 662: 120976.
[20]Ai Y, Li J, Zhu X, et al. Understanding the mechanism of permanganate ion rejection in TpPa-1/Ti3C2T2 composite membranes via molecular dynamic simulation[J]. J Membr Sci, 2024, 698: 122607.
[21]Liu R, Liu Z, Zhao Y, et al. Role of carbon nanotube wetting transparency in rapid water transport for a nanopore membrane[J]. Nano Lett, 2024, 24(11): 3484-3489. 
[22]Wan R, Lu H, Li J, et al. Concerted orientation induced unidirectional water transport through nanochannels[J]. Phys Chem Chem Phys, 2009, 11(42): 9898-9902.
[23]Movlarooy T, Minaie B. First principles study of structural and electronic properties of BNNTs[J]. J Comput Electron, 2018, 17: 1441-1449.
[24]Meng X W, Wang L Y. Sodium chloride solution transport through a carbon nanotube with an embedded carbon nanotube via molecular dynamics simulations[J]. Chem Phys Lett, 2024, 849: 141424. 
[25]Tao J, Song X, Zhao T, et al. Confinement effect on water transport in CNT membranes[J]. Chem Eng Sci, 2018, 192: 1252-1259.
[26]Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes[J]. Chem Rev, 2008, 108(12): 5014-5034.
[27]Srivastava A, Hassan J, Homouz D. Effect of size and temperature on water dynamics inside carbon nano-tubes studied by molecular dynamics simulation[J]. Molecules, 2021, 26(20): 6175.
[28]Song J, Liu L, Li Q, et al. Entrance resistance of water transport into carbon nanotubes: Insights from molecular dynamics simulations[J]. J Mol Liq, 2021, 331: 115739. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号