| PVDF@Mn(SA)臭氧催化分离膜的制备及高效去除四环素的研究 |
| 作者:庞雪微, 李丽丽, 赵焕新, 于慧鑫, 吴 丹 |
| 单位: 1. 沈阳化工大学 环境与安全工程学院, 沈阳 110142; 2. 朝阳市生态环境事务服务中心, 朝阳 122000; 3. 沈阳市化工污染防治重点实验室, 沈阳110142 |
| 关键词: PVDF催化分离膜; 臭氧氧化; 单原子Mn; 四环素 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.008 |
| 分类号: X52; TQ028 |
| 出版年,卷(期):页码: 2025,45(5):73-85 |
|
摘要: |
| 针对水中四环素(TC)难以高效去除的问题,本研究以咖啡渣衍生的N掺杂生物炭为载体,构建单原子Mn[Mn(SA)]催化剂,并负载于PVDF膜制备一体化臭氧催化分离膜[PVDF@Mn(SA)],用于处理水中TC。实验结果表明,PVDF@10%Mn(SA)膜在操作压力为0.1 MPa和O3流量为0.1 L/min条件下,20 min内对TC(20 mg/L)的去除率接近100%,效率远高于单独臭氧催化氧化(34.1%)与膜分离(12.2%)去除率之和,表现出显著的协同效应。该膜在含腐植酸(HA)水样中连续运行120 min后,通量仅衰减5.5%,抗污染性能优异。机理研究表明,非自由基途径(1O2和电子转移)与自由基(·OH和O·-2)途径共同对去除TC起作用。该膜在自来水/地表水中仍能保持88%以上的TC去除率,且循环5次后性能稳定(去除率> 90%)。本研究为抗生素废水处理提供了高效、低成本的催化膜技术,兼具良好的实际应用潜力。 |
| To address the difficulty of efficiently removing tetracycline (TC) from water, in this study, a single-atom Mn [Mn(SA)] catalyst was constructed from N-doped biochar derived from coffee grounds and loaded onto a PVDF membrane to prepare an integrated ozone-catalyzed separator membrane [PVDF@Mn(SA)] for the treatment of TC in water. The experimental results showed that the removal rate of TC (20 mg/L) by PVDF@10%Mn(SA) membrane was close to 100% in 20 min under the operating pressure of 0.1 MPa and O3 flow rate of 0.1 L/min, and the efficiency was much higher than the sum of the removal rates of ozone-catalyzed oxidation (34.1%) and membrane separation (12.2%) alone, which showed significant synergistic effect. The membrane showed only 5.5% flux attenuation after 120 min of continuous operation in humic acid (HA) containing water samples, with excellent anti-pollution performance. Mechanistic studies have shown that non-radical pathway (1O2 and electron transfer) together with free radicals (·OH and O·-2) contributed to TC removal. The membrane still maintained over 88% TC removal in tap/surface water, and had stable performance (>90% removal) after 5 cycles. This study provides an efficient and low-cost catalytic membrane technology for antibiotic wastewater treatment, which combines good potential for practical application. |
|
基金项目: |
| 兴辽英才计划青年拔尖人才项目(XLYC2403153); 2025辽宁省应用基础研究计划项目(2025JH2/101330012); 2024年沈阳市社会治理科技专项(24-213-3-02); 沈阳化工大学科技重点项目(2023DB001) |
|
作者简介: |
| 庞雪微(1999-),女,辽宁锦州人,硕士研究生,主要研究方向为高级氧化 |
|
参考文献: |
| [1]Chen H, Jing L, Teng Y, et al. Characterization of antibiotics in a large-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks[J]. Sci Total Environ, 2018, 618: 409-418. [2]Roberts M C, Schwarz S. Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans[J]. J Environ Qual, 2016, 45(2): 576-592. [3]Ahmed M J, Islam M A, Asif M, et al. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics[J]. Bioresour Technol, 2017, 243: 778-784. [4]Nure J F, Nkambule T T I. The recent advances in adsorption and membrane separation and their hybrid technologies for micropollutants removal from wastewater[J]. J Ind Eng Chem, 2023, 126: 92-114. [5]Priyadarshini M, Das I, Ghangrekar M M, et al. Advanced oxidation processes: performance, advantages, and scale-up of emerging technologies[J]. J Environ Manage, 2022, 316: 115295. [6]Cheng Y, Chen Z, Wang S, et al. Single atom catalysts for heterogeneous catalytic ozonation[J]. Curr Opin Chem Eng, 2023, 41: 100945. [7]Li X, Chen W, Tang Y, et al. Relationship between the structure of Fe-MCM-48 and its activity in catalytic ozonation for diclofenac mineralization[J]. Chemosphere, 2018, 206: 615-621. [8]Hodges B C,Cates E L,Kim J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nat Nanotechnol, 2018, 13(8): 642-650. [9]Bai H,Liang L, Cao P, et al. MgAl2O4 incorporated catalytic ceramic membrane for catalytic ozonation of organic pollutants[J]. Appl Catal B Environ, 2024, 343: 123527. [10]Yecheskel Y, Shreim L, Ying Z, et al. Catalytic ozonation using MnO2 -enabled membranes: toward direct delivery of hydroxyl radicals[J]. Environ Sci Technol Lett, 2024, 11(2): 179-184. [11]Huang D, He N, Zhu Q, et al. Conflicting roles of coordination number on catalytic performance of single-atom Pt catalysts[J]. ACS Catal, 2021, 11(9): 5586-5592. [12]Li W, Guo Z, Yang J, et al. Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion[J]. Electrochem Energy Rev, 2022, 5(3): 9. [13]Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catal, 2012, 2(5): 781-794. [14]Ouyang D, Chen Y, Yan J, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important role of biochar defect structures[J]. Chem Eng J, 2019, 370: 614-624. [15]Dharman R K, Palanisamy G, Oh T H. Sonocatalytic degradation of ciprofloxacin and organic pollutant by 1T/2H phase MoS2 in polyvinylidene fluoride nanocomposite membrane[J]. Chemosphere, 2022, 308: 136571. [16]Zuo J H,Li Z K, Wei C,et al. Fine tuning the pore size and permeation performances of thermally induced phase separation (TIPS) -prepared PVDF membranes with saline water as quenching bath[J]. J Membr Sci, 2019, 577: 79-90. [17]Huang T H, Espino F K C, Tian X Y, et al. Piezocatalytic property of PVDF/graphene self-assembling piezoelectric membrane for environmental remediation[J]. Chem Eng J, 2024, 487: 150569. [18]Siburian R,Sihotang H,Lumban Raja S,et al. New route to synthesize of graphene nano sheets[J]. Orient J Chem, 2018, 34(1): 182-187. [19]Singh K R, Gulati K, Poluri K M. Functionalized nanocatalytic PVDF membrane reactor for degradation of hazardous azo dyes[J]. Chem Eng J, 2025, 503: 158592. [20]Xie J, Zheng Y, Zhang Q, et al. Constructing a carbon sphere-embedded FeO for accelerating electro-peroxone oxidation effectively: The dual catalytic role with O3 and H2O2[J]. Appl Catal B Environ, 2023, 320: 121935. [21]Xiong W,Cui W, Li R,et al. Mineralization of phenol by ozone combined with activated carbon: Performance and mechanism under different pH levels[J]. Environ Sci Ecotechnol, 2020, 1: 100005. [22]Zhang E, Zhao P, Xu G, et al. High efficiency manganese cobalt spinel structure catalytic ozonation ceramic membrane for in situ BPA degradation and membrane fouling elimination[J]. J Environ Chem Eng, 2024, 12(1): 111774. [23]Ma N, Ru Y, Weng M, et al. Synergistic mechanism of supported Mn-Ce oxide in catalytic ozonation of nitrofurazone wastewater[J]. Chemosphere, 2022, 308: 136192. [24]Li X, Xiao C, Ruan X,et al. Enrofloxacin degradation in a heterogeneous electro-fenton system using a tri-metal-carbon nanofibers composite cathode[J]. Chem Eng J, 2022, 427: 130927. [25]Wang L, Li B, Dionysiou D D,et al. Overlooked formation of H2O2 during the hydroxyl radical-scavenging process when using alcohols as scavengers[J]. Environ Sci Technol, 2022, 56(6): 3386-3396. [26]Li X, Huang X, Xi S, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis[J]. J Am Chem Soc, 2018, 140(39): 12469-12475. [27]Wu Q, Zhang Y, Liu H, et al. FexN produced in pharmaceutical sludge biochar by endogenous Fe and exogenous N doping to enhance peroxymonosulfate activation for levofloxacin degradation[J]. Water Res, 2022, 224: 119022. [28]Li B, Wang P, Cheng X, et al. Selective and nonselective removal of hydrophobic compounds by coupling engineered FeOCl in a cathode-anode synergistic electrochemical platform[J]. J Hazard Mater, 2023, 459: 132148. [29]Guan Z, Zhang Y, Zuo S, et al. The synergistic catalytic mechanism between different functional sites of boron/iron on iron oxides in fenton-like reactions[J]. Sep Purif Technol, 2023, 312: 123391. [30]Chen C, Ma T, Shang Y, et al. In-situ pyrolysis of enteromorpha as carbocatalyst for catalytic removal of organic contaminants: Considering the intrinsic N/Fe in enteromorpha and non-radical reaction[J]. Appl Catal B Environ, 2019, 250: 382-395. [31]Shah N S, He X, Khan H M, et al. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study[J]. J Hazard Mater, 2013, 263: 584-592. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号