超亲水/水下超疏油TA/PVP/CNT膜的制备及其性能研究
作者:邱春霞, 董 鑫, 刘 宇, 徐源潞, 范新飞, 宋成文
单位: 1. 交通运输部规划研究院, 北京 100028; 2. 大连海事大学 环境科学与工程学院, 大连 116026; 3. 国投曹妃甸港口有限公司, 唐山 063200
关键词: 超亲水/水下超疏油; 碳纳米管; 高效油水分离
DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.009
分类号: R136.3+3; TQ320.72+1
出版年,卷(期):页码: 2025,45(5):86-99

摘要:
各种工业活动排放的含油废水对生态环境及人类健康造成严重威胁,膜分离因具有操作简便、能耗低、选择性高等优点广泛应用于含油废水处理。本研究将碳纳米管(CNT)沉积在醋酸纤维素(CA-CN)膜上构建纳米级孔径,并引入单宁酸(TA)和聚乙烯吡咯烷酮(PVP)形成水凝胶层,制备出纳米粗糙结构的超亲水/水下超疏油TA/PVP/CNT复合膜。该复合膜呈现出优异的超亲水/水下超疏油性能,能够高效分离多种油水混合物和表面活性剂稳定的水包油乳液(如正己烷、食用油、十六烷、液体石蜡、异辛烷),其分离效率可达99.61%。此外,经过10次水包油乳液循环过滤后,该复合膜的分离性能仍然保持在高水平,这表明TA/PVP/CNT复合膜在长期使用中具有良好的稳定性和抗污染能力。TA/PVP/CNT复合膜具有优越的分离性能和绿色环保的制备方法,在含油废水处理领域具有广阔应用前景。
Oily wastewater discharged from various industrial activities poses a serious threat to the ecological environment and human health. Membrane separation is widely used in the treatment of oily wastewater due to its advantages of simple operation, low energy consumption and high selectivity. In this paper, carbon nanotube (CNT) was deposited on cellulose acetate (CA-CN) membranes to construct nanoscale pores, and tannic acid (TA) and polyvinylpyrrolidone (PVP) were introduced to form a hydrogel layer, preparing a nanorough-structured superhydrophilic/underwater superoleophobic TA/PVP/CNT composite membrane. This composite membrane exhibited excellent superhydrophilic/underwater superoleophobic properties, capable of efficiently separating various oil-water mixtures and oil-in-water emulsions stabilized by surfactants (such as n-hexane, edible oil, cetane, liquid paraffin, isooctane), with a separation efficiency of up to 99.61%. Furthermore, after 10 cycles of oil-in-water emulsion filtration, the separation performance of this composite membrane remained at a high level, which indicates that the TA/PVP/CNT composite membrane has good stability and anti-pollution ability during long-term use. The TA/PVP/CNT composite membrane demonstrates superior separation performance and a green and environmentally friendly preparation method, indicating broad application prospects in the field of oily wastewater treatment. 

基金项目:
国家重点研发计划项目(2023YFC3108300)

作者简介:
邱春霞(1979-),女,辽宁东港人,硕士研究生,主要研究方向为油污水膜分离技术

参考文献:
[1]Zhang N, Qi Y, Zhang Y, et al. A review on oil/water mixture separation material[J]. Ind Eng Chem Res, 2020, 59(33): 14546-14568.
[2]Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. J Mater Chem A, 2017, 5(31): 16025-16058.
[3]Tapdigov S Z, Ahmad F F, Hamidov N N, et al. Increase in the efficiency of water shut-off with the application of polyethylenpolyamine added cement[J]. Chem Probl, 2022, 20(1): 59-67.
[4]Wang Y, Liu X, Lian M, et al. Continuous fabrication of polymer microfiber bundles with interconnected microchannels for oil/water separation[J]. Appl Mater Today, 2017, 9: 77-81.
[5]刘犇,叶向东,郗长青,等. 一种高机械耐久性油水分离网的制备及性能[J]. 塑料工业, 2023, 51(7): 156-162.
[6]Miao W, Jiao D, Wang C, et al. Ethanol-induced one-step fabrication of superhydrophobic-superoleophilic poly(vinylidene fluoride) membrane for efficient oil/water emulsions separation[J]. J Water Process Eng, 2020, 34: 101121.
[7]Li M, Li Y, Chang K, et al. The poly(vinyl alcohol-co-ethylene) nanofiber/silica coated composite membranes for oil/water and oil-in-water emulsion separation[J]. Com Commun, 2018, 7: 69-73.
[8]Deng Y ,Peng C ,Dai M , et al. Recent development of super-wettable materials and their applications in oil-water separation[J]. J Clean Prod, 2020, 26: 121624.
[9]Kang  W,Guo L,Fan H,et al.Flocculation,coalescence and migration of dispersed phase droplets and oil-waterseparation in heavy oil emulsion. J Petrol Sci Eng,2012,81:177-181.
[10]段晓博,杨彪. 聚合物表面超亲水改性进展[J]. 塑料, 2014, 43(3): 114-117.
[11]Liu Y, Zhao X, Zhang C, et al. A hydrophilic lignin-based carbon fiber sizing agent assembled with CNTs towards strengthening epoxy resin[J]. Chem Eng J, 2023, 476: 146624.
[12]Sianipar M, Kim S H, Khoiruddin K, et al. Functionalized carbon nanotube (CNT) membrane: progress and challenges[J]. RSC Adv, 2017, 7(81): 51175-51198.
[13]朱晓宇,梁雨苏,李文泽. 碳纳米管增强铜铬基复合材料的制备及其性能研究[J]. 沈阳化工大学学报, 2023, 37(3): 193-199.
[14]Mavukkandy M O, Zaib Q, Arafat H A. CNT/PVP blend PVDF membranes for the removal of organic pollutants from simulated treated wastewater effluent[J]. J Environ Chem Eng, 2018, 6(5): 6733-6740.
[15]Qu S, Jiang X, Li Q, et al. Developing strong and tough carbon nanotube films by a proper dispersing strategy and enhanced interfacial interactions[J]. Carbon, 2019, 149: 117-124.
[16]Bai Z, Jia K, Zhang S, et al. Surface segregation-induced superwetting separation membranes with hierarchical surface structures and internalized gel networks[J]. Adv Funct Mater, 2022, 32(45): 2204612.
[17]Nam H G, Nam M G, Yoo P J, et al. Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid[J]. Soft Matter, 2019, 15(4): 785-791.
[18]Zhu L, Zhang J, He F, et al. (TA-APTES)Plus: A rapid, green and universal coating for membrane modification toward oil-in-water emulsion separation[J]. J Membr Sci, 2023, 680: 121741.
[19]Lee S Y, Kim J T, Chathuranga K, et al. Tannic-acid-enriched poly(vinyl alcohol) nanofibrous membrane as a UV-shie iding and antibacterial face mask filter material[J]. ACS Appl Mater Interfaces, 2023,15(16): 20435-20443.
[20]Sun F, Li T T, Zhang X, et al. In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation[J]. Chemosphere, 2020, 254: 126873.
[21]何建川,张波,邵阳. 傅里叶变换红外光谱分析[J]. 中国临床医学, 2011, 18(2): 147-149.
[22]Fan H, Wang L, Feng X, et al. Supramolecular hydrogel formation based on tannic acid[J]. Macromolecules, 2017, 50(2): 666-676.
[23]Yang X, He Y, Zeng G, et al. Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation[J]. Chem Eng J, 2017, 321: 245-256.
[24]Xing R, Wang W, Jiao T, et al. Bioinspired polydopamine sheathed nanofibers containing carboxylate graphene oxide nanosheet for high-efficient dyes scavenger[J]. ACS Sustainable Chem Eng, 2017, 5(6): 4948-4956.
[25]Wang G, Zhang J, Lin S, et al. Environmentally friendly nanocomposites based on cellulose nanocrystals and polydopamine for rapid removal of organic dyes in aqueous solution[J]. Cellulose, 2020, 27(4): 2085-2097.
[26]Xu Y, Zhu Y, Song C, et al. Bioinspired SiO2/PDA/PTFE membrane with high corrosion-resistance for long-term efficient oil/water separation[J]. Polymer, 2023, 281: 126143.
[27]Zhao X, Cheng L, Jia N, et al. Polyphenol-metal manipulated nanohybridization of CNT membranes with FeOOH nanorods for high-flux, antifouling and self-cleaning oil/water separation[J]. J Membr Sci, 2020, 600: 117857.
[28]Yang Z, Fang W, Wang Z, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. J Membr Sci, 2021, 620: 118862.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号