| MXene/PVDF复合膜的共混制备及抗污染机制研究 |
| 作者:杨昊川, 魏嘉琪, 杨琳琳, 张 杰, 成晨红, 张媛媛, 蒋敏敏, 韦巧艳, 郑君健 |
| 单位: 1. 桂林电子科技大学 生命与环境科学学院, 桂林 541004; 2. 桂林理工大学 环境科学与工程学院, 桂林 541006; 3. 惠州学院 化学与材料工程学院,惠州 516007; 4. 南方科技大学 环境科学与工程学院, 深圳 518055 |
| 关键词: PVDF膜; MXene; 膜改性; 抗污染性能; XDLVO |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.012 |
| 分类号: X703; TQ028 |
| 出版年,卷(期):页码: 2025,45(5):120-132 |
|
摘要: |
| 常规聚偏二氟乙烯(PVDF)膜具有强疏水性、抗污染性能差的问题,是限制其在废水处理、海水淡化,以及饮用水净化等水处理环境工程领域应用的关键缺陷。本研究采用非溶剂致相分离转化法,将MXene与PVDF共混制备了MXene/PVDF复合膜,并系统研究了MXene添加量对膜抗污染性能的影响和机制。测试结果表明,与纯PVDF膜相比,复合膜的理化性能,包括孔径大小、孔隙率、接触角和Zeta电位,均得到了显著改善。当MXene添加量为1.5 g(质量分数为7.0%,单位膜面积投加量为11.54 g/m2)时,与纯PVDF膜相比,水通量从10.7 L/(m2·h)提高到45.3 L/(m2·h),通量恢复率从60.9%提高到80.8%。XDLVO理论分析表明,纯PVDF膜的能垒为0.58 KT,明显低于复合膜MD5(0.78 KT),说明复合膜对污染物具有更强的排斥倾向。长期实验结果表明,复合膜MD5在厌氧-好氧膜生物反应器中的运行周期可达35 d,约为纯PVDF膜(9 d)的3.9倍,说明其具有良好的实际应用潜力。 |
| ?Conventional polyvinylidene fluoride (PVDF) membranes exhibit strong hydrophobicity and poor anti-fouling performance, which are critical limitations for their applications in water filtration fields including wastewater treatment, seawater desalination and drinking water purification. In this study, MXene/PVDF composite membranes using a NIPS(non-solvent induced phase separation) method by blending MXene with PVDF were prepared, and the impact of different MXene loadings on the membrane’s anti-fouling properties was systematically investigated. The results demonstrated significant improvements in the physicochemical properties of the composite membranes compared to pristine PVDF membranes, including pore size, porosity, contact angle and Zeta potential. When the MXene loading was 1.5 g (mass fraction of 7.0%, dosage per unit membrane area was 11.54 g/m2), in comparison to the pristine PVDF membrane, water flux increased from 10.7 L/(m2·h) to 45.3 L/(m2·h) for the composite membrane, while the flux recovery rate improved markedly from 60.9% to 80.8%. XDLVO theory analysis indicated that the energy barrier for the pristine PVDF membrane was 0.58 KT, significantly lower than that of the composite membrane MD5 (0.78 KT), suggesting a stronger repulsion tendency towards pollutants in the composite membrane. Long-term experimental results showed that the operational cycle of the composite membrane MD5 in an anaerobic-aerobic membrane bioreactor could reach up to 35 d, approximately 3.9 times longer than that of the pristine PVDF membrane (9 d). These findings indicate the excellent practical application potential of the MXene/PVDF composite membranes. |
|
基金项目: |
| 广西自然科学基金-青年科学基金项目(2023GXNSFBA026324); 广东省自然科学基金杰出青年项目(2022A1515110705) |
|
作者简介: |
| 杨昊川(1998-),男,四川广安人,硕士研究生,研究方向为膜法污水处理与资源化技术;魏嘉琪(1998-),女,黑龙江哈尔滨人,博士研究生,研究方向为膜法污水处理与资源化技术 |
|
参考文献: |
| [1]Zhang T, Guo X, Solomon B, et al. A hydrophobic-hydrophilic MXene/PVDF composite hollow fiber membrane with enhanced antifouling properties for seawater desalination[J]. J Membr Sci, 2022, 644: 120146. [2]Huh Y, Yu S, Huh J, et al. Sustainable superhydrophobic PVDF-grafted cellulose membrane for oil/water separation[J]. ACS Appl Polym Mater, 2022, 4: 8441-8449. [3]Hudaib B, Abu-Zurayk R, Waleed H, et al. Fabrication of a novel (PVDF/MWCNT/polypyrrole) antifouling high flux ultrafiltration membrane for crude oil wastewater treatment[J]. Membranes, 2022, 12: 751. [4]Yu H, Gu L, Wu S F, et al. Hydrothermal carbon nanospheres assisted-fabrication of PVDF ultrafiltration membranes with improved hydrophilicity and antifouling performance[J]. Sep Purif Technol, 2020, 247: 116889. [5]Gu J, Xu S D, Lu X L, et al. Study on the membrane formation mechanism of PVDF/PVDF-CTFE blends[J]. J Taiwan Inst Chem E, 2023, 142: 104655. [6]程继锋, 蒋团辉, 詹晓梅, 等. 超亲水聚偏氟乙烯中空纤维膜的制备及性能[J]. 高等学校化学学报, 2020, 41: 358-364. [7]Zhang G, Bai R, Shen S, et al. Hydrophilic and photo-crosslinkable diblock copolymers employed for robust antifouling membrane coatings[J]. Appl Surf Sci, 2019, 464: 429-439. [8]Zhao X, Lan Y, Yang K, et al. Antifouling modification of PVDF membranes via in situ mixed-charge copolymerization and TiO2 mineralization[J]. Appl Surf Sci, 2020, 525: 146564. [9]Ma C, Hu J, Sun W J, et al. Graphene oxide-polyethylene glycol incorporated PVDF nanocomposite ultrafiltration membrane with enhanced hydrophilicity, permeability, and antifouling performance[J]. Chemosphere, 2020, 253: 126649. [10]Fahrina A, Yusuf M, Muchtar S, et al. Development of anti-microbial polyvinylidene fluoride (PVDF) membrane using bio-based ginger extract-silica nanoparticles (GE-SiNPs) for bovine serum albumin (BSA) filtration[J]. J Taiwan Inst Chem E, 2021, 125: 323-331. [11]Abood T, Shabeeb K, Alzubaydi A, et al. Novel MXene/PVDF nanocomposite ultrafiltration membranes for optimized eriochrome black T (azo dye) removal[J]. Desalin Water Treat, 2024, 318: 100311. [12]Lyu S, Chang H, Zhang L, et al. High specific surface area MXene/SWCNT/cellulose nanofiber aerogel film as an electrode for flexible supercapacitors[J]. Compos Part B-Eng, 2023, 264: 110888. [13]Mu X, Chen L, Qu N, et al. MXene/Ag3PO4 modified PVDF composite membranes for efficient interfacial evaporation and photodegradation[J]. J Environ Chem Eng, 2024, 12(3): 112869. [14]Fitzpatrick J, Bera S, Inman A, et al. Record efficiency of β-phase PVDF-MXene composites in thin-film dielectric capacitors[J]. Adv Mater, 2025, 37(12): 2419088. [15]Wang F, Han S, Zhang Y, et al. Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets[J].Commun Chem, 2022, 5(1): 65. [16]Liu B, Zhang X, Li B, et al. Interfacial dielectric enhancement in MXene/PVDF nanocomposites via hydrogen bond-induced dipole modulation[J]. Appl Surf Sci, 2025, 695: 162837. [17]Subasi Y, Cicek B. Recent advances in hydrophilic modification of PVDF ultrafiltration membranes - a review: part Ⅱ[J]. Membr Technol, 2017, 2017(11): 5-11. [18]Chen S R, Wang T, Zhuo X Y, et al. PVDF mixed matrix membranes by incorporation of ionic liquid and MXene for enhancing permeation and antifouling performance[J]. J Environ Chem Eng, 2022, 10: 108027. [19]Razmjou A, Mansouri J, Chen V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes[J]. J Membr Sci, 2011, 378(1/2): 73-84. [20]Guo Z J, Lu W B, Zhang Y, et al. MXene fillers and silver flakes filled epoxy resin for new hybrid conductive adhesives[J]. Ceram Int, 2023, 49(8): 12054-12060. [21]Werber J R, Osuji C O, Elimelech M.Materials for next-generation desalination and water purification membranes[J]. Nat Rev Mater, 2016, 1(5): 16018. [22]Ostovar A, Tarkhani M, Mousavi S A, et al. Surface modification of GO/PVDF composite membrane by MXene/protonated g-C3N4 nanosheets hybrids with improved dye separation and antifouling properties[J]. Polym Eng Sci, 2024, 64(2): 565-576. [23]Zhao X Z, Liu C K. Irreversible fouling control of PVDF ultrafiltration membrane with "fouled surface" for mimetic sewage treatment[J]. RSC Adv, 2016, 6(96): 94184-94192. [24]Gao F, Wang J, Zhang H W, et al. Effects of sodium hypochlorite on structural/surface characteristics, filtration performance and fouling behaviors of PVDF membranes[J]. J Membr Sci, 2016, 519: 22-31. [25]Levin Y K. Characteristics of an electrical double layer of bulk nanobubles in water[J]. Colloid J, 2023, 85(3): 418-422. [26]Wu H H, Shen F, Wang J F, et al. Membrane fouling in vacuum membrane distillation for ionic liquid recycling: Interaction energy analysis with the XDLVO approach[J]. J Membr Sci, 2018, 550: 436-447. [27]Guo J R, Zhang Y, Chen F H, et al. A Membrane with strong resistance to organic and biological fouling using graphene oxide and D-tyrosine as modifiers[J]. Membranes, 2022, 12: 486. [28]Soomro R, Zhang P, Fan B, et al. Progression in the oxidation stability of MXenes[J]. Nano-Micro Lett, 2023, 15(7): 306-323. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号