PBI基/PIM-1复合离聚物提高碱性膜氢燃料电池性能
作者:王蕾蕾, 吴雪梅, 陈婉婷, 逄 博, 崔福军, 贺高红
单位: 1. 大连理工大学 精细化工国家重点实验室, 膜科学与技术研究开发中心, 大连 116024; 2. 大连理工大学 盘锦产业技术研究院, 盘锦 124221
关键词: 离聚物; 聚苯并咪唑; 自聚微孔聚合物(PIMs); 催化层三相界面; 燃料电池
DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.013
分类号: TQ028; TM911.42
出版年,卷(期):页码: 2025,45(5):133-142

摘要:
本研究提出一种用于碱性阴离子交换膜燃料电池(AEMFC)催化层的新型复合离聚物设计。该设计将高离子传导性的亲水聚合物(UTA-PBI-25%) 与具有微孔结构的疏水聚合物(PIM-1) 相结合。亲水组分提供优异的离子传导性和催化剂结合能力,而疏水微孔组分则有效抑制溶胀并显著增强催化层的透气性。优化配比后的复合离聚物实现了催化层结构的协同改善,使其在催化剂分散、电化学性能和电极反应效率方面表现优异。应用于氢氧燃料电池时,该复合离聚物显著提升了电池在高电流密度下的输出性能,获得了高水平的峰值功率密度。这种“亲水黏结剂-疏水造孔剂”复合策略有效兼顾了催化层对离子传导性和气体传质能力的需求,为优化AEMFC性能提供了新思路.
This study proposed a novel composite ionomer design for the catalyst layer of alkaline anion exchange membrane fuel cells (AEMFC). The design combined a highly ion-conductive hydrophilic polymer (UTA-PBI-25%) with a hydrophobic microporous polymer (PIM-1). The hydrophilic component provided excellent ion conductivity and catalyst binding capability, while the hydrophobic microporous component effectively suppressed swelling and significantly enhanced gas permeability within the catalyst layer. The composite ionomer at an optimized ratio achieved synergistic improvements in the catalyst layer structure, resulting in outstanding performance in catalyst dispersion, electrochemical performance and electrode reaction efficiency. When applied to hydrogen-oxygen fuel cells, this composite ionomer substantially enhanced the cell’s output performance at high current densities, achieving a high peak power density. This “hydrophilic binder-hydrophobic pore-forming agent” composite strategy effectively balanced the catalyst layer’s requirements for both ion conductivity and gas transport capabilities, offering a new approach to optimize AEMFC performance. 

基金项目:
国家自然科学基金项目(22378042, 22021005)

作者简介:
王蕾蕾(2000-), 女, 硕士研究生, 研究方向为燃料电池

参考文献:
[1]Jacobson M Z, Colella W G, Golden D M, et al. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science, 2005, 308: 1901-1905.
[2]Zhang F, Zhang H, Qu C, et al. Poly(vinylidene fluoride) based anion conductive ionomer as a catalyst binder for application in anion exchange membrane fuel cell[J]. J Power Sources, 2011, 196(6): 3099-3103.
[3]Chen N, Wang H H, Kim S P, et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells[J]. Nat Commun, 2021, 12: 2367.
[4]Cao H, Pan J, Zhu H, et al. Interaction regulation between ionomer binder and catalyst: active triple-phase boundary and high performance catalyst layer for anion exchange membrane fuel cells[J]. Adv Sci, 2021, 8(19): 2101744.
[5]Wang B, Pan J, Zou X, et al. UV-crosslinkable anthracene-based ionomer derived gas “expressway” for anion exchange membrane fuel cells[J]. J Mater Chem A, 2022, 10: 13355-13367.
[6]Zhao J, Zou X, Pan J, et al. Efficient transport of active species in triple-phase boundary through “paddle-effect” of ionomer for alkaline fuel cells[J]. Chem Eng J, 2023, 452: 139498.
[7]Zhang J, Zhu W, Huang T, et al. Recent insights on catalyst layers for anion exchange membrane fuel cells[J]. Adv Sci, 2021, 8: 2100284.
[8]Hyun J, Lee H, Doo G, et al. Improving anion exchange membrane fuel cell performance via enhanced ionomer-carbon interaction in cathode catalyst layers with carbon-supported Pt catalyst using a pyrene carboxyl acid coating[J]. Appl Catal B Environ Energy, 2024, 357: 124322. 
[9]Hu C, Kang H W, Jung S W, et al. Stabilizing the catalyst layer for durable and high performance alkaline membrane fuel cells and water electrolyzers[J]. ACS Cent Sci, 2024, 10(3): 603-614. 
[10]Yu W, Xu Y, Liu Z, et al. Bioadhesive-inspired ionomer for membrane electrode assembly interface reinforcement in fuel cells[J]. J Am Chem Soc, 2024, 146(32): 22590-22599. 
[11]Liu C, Ding R, Yin X, et al. Comprehensive study on the electrochemical evolution, reaction kinetics, and mass transport at the anion exchange ionomer-Pt interface for oxygen reduction reaction[J]. ACS Appl Mater Interfaces, 2024, 16(38): 51660-51668. 
[12]Zhang Q N,Dong S D, Shao P P, et al. Covalent organic framework-based porous ionomers for high-performance fuel cells.[J]. Science (New York, N.Y.), 2022, 378(6616): 181-186.
[13]Sun X, Guan J Y, Wang X, et al. Phosphonated ionomers of intrinsic microporosity with partially ordered structure for high-temperature proton exchange membrane fuel cells.[J]. ACS central science, 2023, 9(4): 733-741.
[14]Yang R, Wu X, Chen W, et al. Engineering of interconnected ionic channels in polybenzimidazole anion-exchange membranes[J]. Ind Eng Chem Res, 2023, 62: 16746-16756.
 [15]Guan J, Du J, Sun Q, et al. Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture[J]. Sci Adv, 2025, 11(1). 
[16]Pilar del Hierro O, Boyron A, Ortín A, et al. Fully automated instrument for solution viscosity in polymeric materials[J]. Macromol Symp, 2022, 406: 2200018. 
[17]Ayyaz A, Foster A B, Cseri L, et al. Greener synthesis of the polymer of intrinsic microporosity PIM-1 for gas separation[J]. ACS Sustainable Chem Eng, 2024, 13(7): 2784-2792. 
[18]李颖. 燃料电池催化层氧气局域传质阻力研究:离聚物形态调控[D]. 重庆:重庆大学, 2022.
[19]肖迪. 基于哌啶基团阴离子型离聚物的合成及其催化层研究[D]. 天津:天津大学, 2022. 
[20]Saidin N U, Jehan O S, Leong K S, et al. Influence of ionomer concentration and membrane thickness on membrane electrode assembly in alkaline fuel cell performance[J]. Asia-Pac J Chem Eng, 2024, 19(2): 1-9. 
[21]Adhikari S, Leonard D P, Lim K H, et al. Hydrophobic quaternized poly(fluorene) ionomers for emerging fuel cells[J]. ACS Appl Energy Mater, 2022, 5(3): 2663-2668. 
[22]Liang X, Shehzad M A, Zhu Y, et al. Ionomer cross-linking immobilization of catalyst nanoparticles for high performance alkaline membrane fuel cells[J]. Chem Mater, 2019, 31(19): 7812-7820.
 [23]Chen N, Jiang Q, Song F, et al. Robust piperidinium-enriched polystyrene ionomers for anion exchange membrane fuel cells and water electrolyzers[J]. ACS Energy Lett, 2023, 8(10): 4043-4051.
 [24]Daniel L P, Michelle L, Jeffrey M K, et al. Phenyl-free polynorbornenes for potential anion exchange ionomers for fuel cells and electrolyzers[J]. Adv Energy Mater, 2022, 13(3): 1-8. 
[25]Maurya S, Noh S, Matanovic I, et al. Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W/cm2 power density[J]. Energy Environ Sci, 2018, 11(11): 3283-3291. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号