| 固相介质投加对MBR膜污染及微生物群落的影响 |
| 作者:吴 伟, 李 明, 张鹏飞, 高 菲, 吴 炜 |
| 单位: 1. 合肥市水务环境建设投资有限公司, 合肥 230000; 2. 天津工业大学 环境科学与工程学院, 天津 300387; 3. 上海市政工程设计研究总院(集团)有限公司, 上海 200092 |
| 关键词: 膜生物反应器(MBR); 膜污染; 固相介质; 微生物群落; 膜面剪切力 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.015 |
| 分类号: TQ028; X703 |
| 出版年,卷(期):页码: 2025,45(5):153-161 |
|
摘要: |
| 膜生物反应器(MBR)在污水处理中应用广泛,但膜污染制约其长期稳定运行。本研究创新性地将光纤布拉格光栅技术(FBG)引入MBR流场,系统探究活性炭、聚乙烯醇(PVA)海绵和二氧化硅三种介质对反应器流场特性及群落演替的作用机制。结果表明,提升曝气强度显著增强三种介质表面的流场剪切力,其中PVA海绵因三维网状结构使通量提升最显著,活性炭颗粒与二氧化硅次之。PVA海绵为微生物提供适宜附着位点,可显著提升胞内酶活性,而活性炭颗粒与二氧化硅对酶活性提升作用有限。活性炭加速污染降解菌群增殖,PVA海绵驱动微生物成膜化以减少生物产物沉积,二氧化硅则依赖剪切力控制污染,对群落结构影响微弱。本研究为优化MBR膜污染控制策略提供了理论依据. |
|
Membrane bioreactor (MBR) is widely used in wastewater treatment, but membrane fouling restricts their long-term stable operation. This study innovatively introduced fiber Bragg grating (FBG) technology into the MBR flow field, and systematically explored the action mechanisms of three media, namely activated carbon, PVA sponge and silica, on the flow field characteristics and community succession of the reactor. The results showed that increasing aeration intensity significantly enhanced the flow field shear force on the surface of the three media. Among them, the PVA sponge, due to its three-dimensional network structure, led to the most significant increase in flux, followed by activated carbon particles and silica. The PVA sponge provided suitable attachment sites for microorganisms, which could significantly improve intracellular enzyme activity, while activated carbon particles and silica had limited effects on enhancing enzyme activity. Activated carbon accelerated the proliferation of pollution-degrading microbial communities; the PVA sponge drove the film formation of microorganisms to reduce the deposition of biological products; silica controlled pollution relying on shear force and had a weak impact on the community structure. This study provides a theoretical basis for optimizing MBR membrane fouling control strategies. |
|
基金项目: |
| 上海市“科技行动计划”国际合作课题资助项目(22230730300) |
|
作者简介: |
| 吴伟(1985-),男,湖北天门人,工程师,研究方向为污水处理与资源化 |
|
参考文献: |
| [1]Attallah O A, Al-Ghobashy M A, Nebsen M, et al. Assessment of pectin-coated magnetite nanoparticles in low-energy water desalination applications[J]. Environ Sci Pollut Res, 2018, 25(19): 18476-18483. [2]Zhou T, Guo J, Zhang S, et al. Metabolic products comparison in autotrophic and heterotrophic nitrogen removal: Insights into membrane fouling[J]. Water Res, 2025, 282: 123619. [3]Razmjou A, Liu Q, Simon G P, et al. Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy[J]. Environ Sci Technol, 2013, 47(22): 13160. [4]欧阳卓明, 罗凡, 孙先昌, 等. 基于BioWin对AAO-MBR工艺的生物除磷优化[J]. 中国给水排水, 2025, 41(7): 82-88. [5]Skouteris G, Hermosilla D, López P, et al. Anaerobic membrane bioreactors for wastewater treatment: A review[J]. Chem Eng J, 2012, s198/199: 138-148. [6]Taheri M, Fallah N, Nasernejad, B. Comparison of high-concentration azo dye removal by long HRT in MSBRs' bioaugmented with GAC and sponge media[J]. Environ Sci Pollut Res, 2023, 30(1):1201-1215. [7]Hartanto Y, Yun S, Jin B, et al. Functionalized thermo-responsive microgels for high performance forward osmosis desalination[J]. Water Res, 2015, 70: 385-393. [8]王亚军, 徐衍超, 张四永, 等. 曝气协同粉末活性炭调控MBR运行[J]. 中国给水排水, 2024, 40(17): 71-78. [9]王旭东, 赵童, 刘琪, 等. 海绵填料对AAO-MBR处理效能及膜污染的影响[J]. 中国给水排水, 2021, 37(13): 21-26. [10]Liu Y N, Zhang X B, Ngo H H, et al. Specific approach for membrane fouling control and better treatment performance of an anaerobic submerged membrane bioreactor[J]. Bioresource Technol, 2018, 268: 658-664. [11]肖霄. 添加填料对减缓MBR膜污染的影响及作用机制[D]. 沈阳: 辽宁大学, 2018. [12]Wang K M, Shen Y, Jiang S F, et al. The effect of different static biocarriers on process performance, membrane fouling and microbial community in submerged membrane bioreactor treating municipal wastewater under high and low carbon/nitrogen ratios[J]. J Water Process Eng, 2022, 47: 102709. [13]Alighardashi A, Pakan M, Jamshidi S, et al. Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment[J]. Member Water Treat, 2017, 8(6): 517-528. [14]Molina-Muoz M, Poyatos J M, Rodelas B, et al. Microbial enzymatic activities in a pilot-scale MBR experimental plant under different working conditions[J]. Bioresource Technol, 2010, 101(2): 696-704. [15]任治印. 生活污水处理厂中抗性基因的分布特征及等离子体/CaO2对污泥中抗性基因的去除工艺[D]. 西安: 西北农林科技大学, 2023. [16]Shi J, Liang Z X, Dai X H. Enhanced biological phosphorus and nitrogen removal by high-concentration powder carriers: Extracellular polymeric substance, microbial communities, and metabolic pathways[J]. Environ Sci Pollut Res, 2023, 30: 4010-4022. [17]Silva A F, Antunes S, Saunders A, et al. Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor[J]. Appl Microbiol Biot, 2016, 100(19): 8507-8521. [18]Sinahroy A, Kim S H, Kim S H. Effect of electrooxidation pretreatment on treatment efficiency, membrane fouling and microbial community of a membrane bioreactor treating sludge dewatering wastewater[J]. Process Saf Environ, 2024, 191(Part A): 466-477. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号