低价离子分离膜及其在提锂领域的应用
作者:郑卓凡, 王保国
单位: 清华大学 化学工程与低碳技术国家重点实验室, 北京 100084
关键词: 膜分离;离子筛;提锂;Li+/Mg2+分离
DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.019
分类号: TQ028.8; TS396.5
出版年,卷(期):页码: 2025,45(5):191-206

摘要:
锂、镁等低价态离子在能源存储、环境保护和资源利用等方面,发挥着日益重要的作用,特别是电动汽车及电化学储能的发展,导致全球锂产品需求量激增,高效环保的提锂技术成为研究热点。本文对低价选择性离子交换膜的分离机理及制备方法进行了综述,重点讨论了膜分离技术在提锂过程中的应用现状及相关研究热点。纳滤、电渗析等膜技术在关键的分盐、盐浓缩方面展现出优异的分离效果,但在膜通量与选择性的trade-off效应、运行过程的长期稳定性,以及装置成本等方面仍有制约瓶颈亟需突破,规模化应用仍是严重挑战。未来研究需聚焦膜材料结构优化和新工艺开发,兼具“离子筛分”与离子交换双重功能的离子膜具有重要研究价值。尽早突破多离子复杂溶液分离纯化技术瓶颈,对推动锂资源高效提取与循环利用至关重要。
 
 

Low-valent ions such as lithium and magnesium are playing increasingly significant roles in energy storage, environmental protection and resource utilization. Particularly, the rapid development of electric vehicles and battery energy storage systems has triggered a surge in global demand for lithium resources, making  highly efficient and environmentally friendly lithium extraction technologies as a key research focus.  This review systematically summarizes the separation mechanisms and preparation strategies of low-valent ion separation membranes, with particular emphasis on analyzing the current applications and research hotspots of membrane separation technology in lithium extraction processes.While nanofiltration and electrodialysis demonstrate excellent separation effects in key aspects such as salt separation and concentration, challenges such as the trade-off between permeability and selectivity, long-term stability, and high operational costs remain unresolved. Large-scale application remains a serious challenge. Future research needs to focus on the optimization of membrane material structures and the development of new processes. Ion membranes with dual functions of “ion sieving” and ion exchange are of significant research value.  Breaking through the bottleneck of separating and purifying complex solutions composed of multiple ions as soon as possible is crucial to promoting the efficient extraction and recycling of lithium resources. 

基金项目:
国家自然科学基金项目(22278239); 国家重点研发计划(2022YFB2404903); 中国石油化工股份有限公司立项支持项目(224317)

作者简介:
郑卓凡(2001-),男,河北唐山人,博士研究生,研究方向为离子分离膜

参考文献:
[1]Wang Y R, Zhang W, Zeng X J, et al. Membranes for separation of alkali/alkaline earth metal ions: A review[J]. Sep Purif Technol, 2022, 278: 119640.
[2]Ge L, Wu B, Yu D B, et al. Monovalent cation perm-selective membranes (MCPMs): New developments and perspectives[J]. Chin J Chem Eng, 2017, 25(11): 1606-1615.
[3]Zhu R, Wang S X, Srinivasakannan C, et al. Lithium extraction from salt lake brines with high magnesium/lithium ratio: a review[J]. Environ Chem Lett, 2023, 21(3): 1611-1626.
[4]Mineral Commodity Summaries 2024[R]. United States Geological Survey (USGS), 2024: 111.
[5]Global Critical Minerals Outlook 2024[R]. International Energy Agency (IEA), 2024: 127.
[6]李健, 徐燕青, 阮慧敏,等. 单价选择性阳离子交换膜的研究进展[J]. 膜科学与技术, 2015, 35(3): 113-120.
[7]Peng Q, Wang R Y, Zhao Z L, et al. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane[J]. Nat Commun, 2024, 15(1): 2505.
[8]Xu T T, Shehzad M A, Yu D B, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597.
[9]Li Z, Li C Y, Liu X W, et al. Continuous electrical pumping membrane process for seawater lithium mining[J]. Energy Environ Sci, 2021, 14(5): 3152-3159.
[10]Ruan H M, Zheng Z H, Pan J F, et al. Mussel-inspired sulfonated polydopamine coating on anion exchange membrane for improving permselectivity and anti-fouling property[J]. J Membr Sci, 2018, 550: 427-435.
[11]Wang Z, You X D, Yang C, et al. Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal[J]. J Membr Sci, 2022, 642: 119971.
[12]Sata T, Yamaguchi T, Matsusaki K. Effect of hydrophobicity of ion-exchange groups of anion-exchange membranes on permselectivity between 2 anions[J]. J Phys Chem, 1995, 99(34): 12875-12882.
[13]Fan F Y, Ren Y W, Zhang S, et al. A bioinspired membrane with ultrahigh Li+/Na+ and Li+/K+ separations enables direct lithium extraction from brine[J]. Adv Sci, 2024, 11(35): 2402898.
[14]Volkov A G, Paula S, Deamer D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochem Bioenerg, 1997, 42(2): 153-160.
[15]Tian X P, Ye C C, Zhang L Y, et al. Enhancing membrane materials for efficient Li recycling and recovery[J]. Adv Mater, 2025, 37(5): 2402335.
[16]Epsztein R, Shaulsky E, Qin M, et al. Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport[J]. J Membr Sci, 2019, 580: 316-326.
[17]王绍州. 单价选择性阳离子交换膜的制备及其处理重金属废水研究[D]. 邯郸: 河北工程大学, 2022.
[18]Bao S W, Ma Z Y, Yu L, et al. Randomly oriented covalent organic framework membrane for selective Li+ sieving from other ions[J]. Nat Commun, 2025, 16(1): 3896.
[19]Low Z X, Zhang Q X, Wang Q Y, et al. Inorganic solid-state electrolyte membranes for lithium extraction[J]. Nat Rev Mater, 2025, 10(6): 397-399.
[20]Li W, Shi C, Zhou A Y, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Sep Purif Technol, 2017, 186: 233-242.
[21]苏琬. 离子交换膜表面改性的研究——聚吡咯浸渍改性阳膜[D]. 兰州: 兰州交通大学, 2017.
[22]Ge L, Wu B, Li Q H, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation[J]. J Membr Sci, 2016, 498: 192-200.
[23]Zhang D Y, Jiang C X, Li Y Y, et al. Electro-driven in situ construction of functional layer using amphoteric molecule: The role of tryptophan in ion sieving[J]. ACS Appl Mater Interfaces, 2019, 11(40): 36626-36637.
[24]Ying J D, Lin Y Q, Zhang Y R, et al. Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity[J]. Chem Eng J, 2022, 446: 137076.
[25]Afsar N, Shehzad M A, Irfan M, et al. Cation exchange membrane integrated with cationic and anionic layers for selective ion separation via electrodialysis[J]. Desalination, 2019, 458: 25-33.
[26]Lu O Y, Malaisamy R, Bruening M L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations[J]. J Membr Sci, 2008, 310(1-2): 76-84.
[27]Xiao H F, Chu C H, Xu W T, et al. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment[J]. J Membr Sci, 2019, 586: 44-52.
[28]Li J, Zhu J Y, Wang J, et al. Charge-assisted ultrafiltration membranes for monovalent ions separation in electrodialysis[J]. J Appl Polym Sci, 2018, 135(24): 45692.
[29]Wang M, Jia Y X, Yao T T, et al. The endowment of monovalent selectivity to cation exchange membrane by photo-induced covalent immobilization and self-crosslinking of chitosan[J]. J Membr Sci, 2013, 442: 39-47.
[30]Wang A Q, Breakwell C, Foglia F, et al. Selective ion transport through hydrated micropores in polymer membranes[J]. Nature, 2024, 635(8038): 353-358.
[31]Wang Y, Smith S J D, Liu Y, et al. Surface hydrophilicity modification of thin-film composite membranes with metal-organic frameworks (MOFs) Ti-UiO-66 for simultaneous enhancement of anti-fouling property and desalination performance[J]. Sep Purif Technol, 2022, 302: 122001.
[32]Wu Z H, Li C, Huang C, et al. Wettability-regulated synthesis of metal-organic framework array with subnanochannels enables efficient separation of mono-/multivalent metal ions[J]. Chem Eur J, 2023, 29(39): e202301163.
[33]Wang H J, Zhai Y M, Li Y, et al. Covalent organic framework membranes for efficient separation of monovalent cations[J]. Nat Commun, 2022, 13(1): 7123.
[34]Wang L, Liu M H, Zhao J H, et al. Comb-shaped sulfonated poly(ether ether ketone) as a cation exchange membrane for electrodialysis in acid recovery[J]. J Mater Chem A, 2018, 6(45): 22940-22950.
[35]Yao Z K, Guo H, Yang Z, et al. Preparation of nanocavity-contained thin film composite nanofiltration membranes with enhanced permeability and divalent to monovalent ion selectivity[J]. Desalination, 2018, 445: 115-122.
[36]Dong Y, Liu Y H, Li H, et al. Crown ether-based Troger’s base membranes for efficient Li+/Mg2+ separation[J]. J Membr Sci, 2023, 665: 121113.
[37]Lu Z, Wu Y, Ding L, et al. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation[J]. Angew Chem Int Ed, 2021, 60(41): 22265-22269.
[38]Huang L Z, Wu H Y, Ding L, et al. Shearing liquid-crystalline MXene into lamellar membranes with super-aligned nanochannels for ion sieving[J]. Angew Chem Int Ed, 2024, 63(6): e202314638.
[39]Li X H, Mo Y H, Qing W H, et al. Membrane-based technologies for lithium recovery from water lithium resources: A review[J]. J Membr Sci, 2019, 591: 117317.
[40]Li P F, Lan H L, Chen K, et al. Novel high-flux positively charged aliphatic polyamide nanofiltration membrane for selective removal of heavy metals[J]. Sep Purif Technol, 2022, 280: 119949.
[41]Xu Y, Peng H W, Luo H, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J]. Desalination, 2022, 526: 115519.
[42]Tao L, Wang X J, Wu F D, et al. Highly efficient Li+/Mg2+ separation of monovalent cation permselective membrane enhanced by 2D metal organic framework nanosheets[J]. Sep Purif Technol, 2022, 296: 121309.
[43]Razmjou A, Asadnia M, Hosseini E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nat Commun, 2019, 10(1): 5793.
[44]Meng W T, Chen S F, Guo Z Y, et al. Three-dimensional cationic covalent organic framework membranes for rapid and selective lithium extraction from saline water[J]. Nat Water, 2025, 3: 191-200.
[45]Gan N, Lin Y Q, Wu B L, et al. Supramolecular-coordinated nanofiltration membranes with quaternary-ammonium Cyclen for efficient lithium extraction from high magnesium/lithium ratio brine[J]. Water Res, 2025, 268: 122703.
[46]Li P S, Jiang L, Liu L F, et al. Chelation-based metal cation stabilization of graphene oxide membranes towards efficient sieving of mono/divalent ions[J]. J Membr Sci, 2022, 655: 120604.
[47]Nie X Y, Sun S Y, Sun Z, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J]. Desalination, 2017, 403: 128-135.
[48]Yang J G, Wang Y G, Zhang M H, et al. Lithium metal recovery from sea water by a flexible and scalable membrane with lithium-ion exclusive channels[J]. Angew Chem Int Ed, 2024, 63(51): e202411957.
[49]Zhao Z W, Liu G, Jia H, et al. Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. J Membr Sci, 2020, 596: 117685.
[50]Jiang C X, Wang Y M, Wang Q Y, et al. Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM)[J]. Ind Eng Chem Res, 2014, 53(14): 6103-6112.
[51]Ipeki D, Altiok E, Bunani S, et al. Effect of acid-base solutions used in acid-base compartments for simultaneous recovery of lithium and boron from aqueous solution using bipolar membrane electrodialysis (BMED)[J]. Desalination, 2018, 448: 69-75.
[52]Wei X L, Gao W J, Wang Y M, et al. A green and economical method for preparing lithium hydroxide from lithium phosphate[J]. Sep Purif Technol, 2022, 280: 119909.
[53]Zhang F, Yang S X, Du Y M, et al. A low-cost anodic catalyst of transition metal oxides for lithium extraction from seawater[J]. Chem Commun, 2020, 56(47): 6396-6399.
[54]Hoshino T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor[J]. Desalination, 2015, 359: 59-63.
[55]Yang S, Wang Y, Pan H, et al. Lithium extraction from low-quality brines[J]. Nature, 2024, 636(8042): 309-321.
[56]Seo D, Lee J, Kong S R, et al. Selective lithium extraction from salt-lake brine using LATP-incorporated cellulose membranes in electrically driven systems[J]. J Membr Sci, 2025, 718: 123676.
[57]Guo C S, Li N, Qian X M, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: “Drag” effect from carboxyl-containing negative interlayer[J]. Sep Purif Technol, 2020, 230: 115567.
[58]Afsar N U, Ji W G, Wu B, et al. SPPO-based cation exchange membranes with a positively charged layer for cation fractionation[J]. Desalination, 2019, 472: 114145.
[59]Zhang Y Y, Zhou K, Su S G, et al. Congener-welded crystalline carbon nitride membrane for robust and highly selective Li/Mg separation[J]. Sci Adv, 2024, 10(24): eadm9620.
[60]Ren L, Chen J X, Han J, et al. Biomimetic construction of smart nanochannels in covalent organic framework membranes for efficient ion separation[J]. Chem Eng J, 2024, 482: 148907.
[61]Song Y, Fang S, Xu N, et al. Solar transpiration-powered lithium extraction and storage[J]. Science, 2024, 385(6716): 1444-1449.
[62]Xu R, Xiao X, Zhang G, et al. Continuous lithium extraction from brine by efficient redox-couple electrodialysis[J]. Matter, 2024, 7(11): 3876-3890.
[63]He L H, Xu W H, Song Y F, et al. New insights into the application of lithium-ion battery materials: Selective extraction of lithium from brines via a rocking-chair lithium-ion battery system[J]. Global Challenges, 2018, 2(2): 1700079.
[64]Li Z, Chen I C, Cao L, et al. Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design[J]. Science, 2024, 385(6716): 1438-1444.
[65]Jiang T, Wei Y N, Wei H B, et al. Selective mono/divalent ion separation in bifunctional ionomeric capacitive deionization incorporated with counter-charge ionomer layer[J]. Sep Purif Technol, 2025, 354: 128902.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号