| 纳米气泡在聚酰胺膜制备中作用研究进展 |
| 作者:赵连瑞, 徐昊洋, 吴昆鹏, 康 燕, 吴宗策, 黎 颖 |
| 单位: 1. 沃顿科技股份有限公司, 贵阳 550014; 2. 深圳职业技术大学, 深圳 518118 |
| 关键词: 纳米气泡; 聚酰胺膜; 界面聚合; 脊谷结构 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.020 |
| 分类号: TQ028; TB484 |
| 出版年,卷(期):页码: 2025,45(5):207-216 |
|
摘要: |
| 近年来纳米气泡因其独特的物理化学性质,在反渗透与纳滤膜的制备过程中受到广泛关注,已成为膜结构精控研究的前沿方向之一。本文系统综述了纳米气泡在聚酰胺膜表面脊谷结构形成中的作用机理,详细探讨了其在界面聚合过程中的形成机制、定向构筑方式以及稳定性调控策略,进一步总结了表面活性剂、溶剂调控、非等温界面等方法对纳米气泡稳定性的影响,并探讨了纳米空隙尺寸与膜层厚度之间的耦合关系及其对膜性能的影响。 |
| Nanobubbles have attracted increasing attention in recent years due to their unique physicochemical properties, particularly in the fabrication of reverse osmosis (RO) and nanofiltration (NF) membranes. This review systematically summarizes the role of nanobubbles in the formation of ridge-and-valley structures on the surface of polyamide membranes. The formation mechanisms, directional construction method and stabilization strategies of nanobubbles during interfacial polymerization are comprehensively discussed. Additionally, the effects of surfactants, solvent regulation, and non-isothermal interfacial conditions on nanobubble stability are analyzed. The coupling relationship between nanovoid size and membrane layer thickness, as well as their combined impact on membrane performance, is also examined. |
|
基金项目: |
| 城市污水资源化利用关键技术研发与应用示范(2022YFC3203100) |
|
作者简介: |
| 赵连瑞(1990-),男,山东滕州人,硕士研究生,主要研究方向为反渗透膜开发 |
|
参考文献: |
| [1]梁恒, 李圭白. 饮用水净化工艺的代际认知与融合[J]. 给水排水, 2021, 57(1): 1-3. [2]Lin D C, Bai L M, Xu D L, et al. Effects of oxidation on humic-acid-enhanced gypsum scaling in different nanofiltration phases: Performance, mechanisms and prediction by differential logtransformed absorbance spectroscopy[J]. Water Res, 2021, 195: 116989. [3]Xu D L, Zheng J F, Zhang X, et al. Mechanistic insights of a thermoresponsive interface for fouling control of thin-film composite nanofiltration membranes[J]. Environ Sci Technol, 2022, 56(3): 1927. [4]丁晶, 关淑妍, 赵庆良, 等. 垃圾渗滤液膜滤浓缩液处理技术研究与应用进展[J]. 哈尔滨工业大学学报, 2021, 53(11): 1-13. [5]Xu D L, Zhu X W, Luo X S, et al. MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport[J]. Environ Sci Technol, 2021, 55(2): 1270. [6]Louie J S, Pinnau I, Reinhard M. Effect of surface coating process condition on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes[J]. J Membr Sci, 2011, 367(1/2): 249-255. [7]Zverina L, Koch M, Andersen M F, et al. Controlled pore collapse to Increase solute rejection of modified pes membranes[J]. J Membr Sci, 2020, 595: 117515. [8]Foudas A W, Kosheleva R I, Favvas E P, et al. Fundamentals and applications of nanobubbles: A review[J]. Chem Eng Res Des, 2023, 189: 64-86. [9]Alheshibri M, Baroot A A, Shui L, et al. Nanobubbles and nanoparticles[J]. Curr Opin Colloid Interface Sci, 2021,55: 101470. [10]Tan B H, An H, Ohl C D. Stability of surface and bulk nanobubbles[J]. Curr Opin Colloid Interface Sci, 2021,53: 101428. [11]Parker J L, Claesson P M, Attard P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. J Phys Chem, 1994, 98(34): 8468-8480. [12]Lou S T, Ouyang Z Q, Zhang Y, et al. Nanobubbles on solid surface imaged by atomic force microscopy[J]. J Vac Sci Technol B, 2000, 18(5): 2573-2575. [13]Ishida N, Inoue T, Miyahara M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy[J]. Langmuir, 2000, 16(16): 6377-6380. [14]Peng L E, Yao Z, Liu X, et al. Tailoring polyamide rejection layer with aqueous carbonate chemistry for enhanced membrane separation: Mechanistic insights, chemistry-structure-property relationship, and environmental implications[J]. Environ Sci Technol, 2019, 53(16): 9764-9770. [15]Peng L E, Jiang Y, Wen L, et al. Does interfacial vaporization of organic solvent affect the structure and separation properties of polyamide RO membranes?[J]. J Membr Sci, 2021, 625: 119173. [16]Kosowski M M, Mcgilvery C M, Li Y, et al. Micro-to nano-scale characterisation of polyamide structures of the SW30HR RO membrane using advanced electron microscopy and stain tracers[J]. J Membr Sci, 2016,520: 465-476. [17]Kong C, Kanezashi M, Yamomoto T, et al. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination[J]. J Membr Sci, 2010,362(1/2): 76-80. [18]Freger V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization[J]. Langmuir, 2003,19(11): 4791-4797. [19]Lau W J, Ismail A F, Misdan N, et al. A recent progress in thin film composite membrane: A review[J]. Desalination, 2012,287: 190-199. [20]Lin L, Lopez R, Ramon G Z, et al. Investigating the void structure of the polyamide active layers of thin-film composite membranes[J]. J Membr Sci, 2016,497: 365-376. [21]Ma X H, Yao Z K, Yang Z, et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity[J]. Environ Sci Technol Lett, 2018(5): 123-130. [22]Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes[J]. J Membr Sci, 2009, 336(1/2): 140-148. [23]Jiang Z, Karan S, Livingston A G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis[J]. Adv Mater, 2018, 30(15): 1705973. [24]Song X, Gan B, Yang Z, et al. Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes[J]. J Membr Sci, 2019, 582: 342-349. [25]Li D, Liu W, Wang X, et al. Nodular networks in hydrated polyamide desalination membranes enhance water transport[J]. Sci Adv, 2025, 11(18): eadt3324. [26]Peng L E, Gan Q, Yang Z, et al. Deciphering the role of amine concentration on polyamide formation toward enhanced RO performance[J]. ACS EST Eng, 2022, 2(5): 903-912. [27]Xu J, Yan H, Zhang Y, et al. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of Tfc membranes[J]. J Membr Sci, 2017, 541: 174-188. [28]Wang Y, Xu H, Ding M, et al. MXene-regulation polyamide membrane featuring with bubble-like nodule for efficient dye/salt separation and antifouling performance[J]. RSC Adv, 2022, 12(17): 10267-10279. [29]Wang L A, He H, Gan Q M, et al. Polar solvent-induced spontaneous nanofoaming for synthesizing ultra-high-performance polyamide nanofiltration membranes[J]. Nano Lett, 2024(24): 7373-7380. [30]Chen J, Pei H, Zou Y, et al. Dissecting the impacts of nanobubbles and heat generated in polymerization on polyamide nanofiltration membranes[J]. J Membr Sci, 2024, 699: 122646. [31]Long L, Guo H, Zhang L, et al. Engraving polyamide layers by in situ self-etchable CaCO3 nanoparticles enhances separation properties and antifouling performance of reverse osmosis membranes[J]. Environ Sci Technol, 2024, 58(14): 6435-6443. [32]Gan Q, Peng L E, Guo H, et al. Cosolvent-assisted interfacial polymerization toward regulating the morphology and performance of polyamide reverse osmosis membranes: Increased m-phenylenediamine solubility or enhanced interfacial vaporization?[J]. Environ Sci Technol, 2022, 56(14): 10308-10316. [33]Zhao G J, Li L L, Guo H Q, et al. Polyamide nanofilms through a non-isothermal-controlled interfacial polymerization[J]. Adv Funct Mater, 2024(34): 2313026. [34]Li Y, Pan G Y, Wang J, et al. Tailoring the polyamide active layer of thin-film composite forward osmosis membranes with combined cosolvents during interfacial polymerization[J]. Ind Eng Chem Res, 2020,59: 8230-8242. [35]Cui Y, Liu X Y, Chung T S. Ultrathin polyamide membranes fabricated from free-standing interfacial polymerization: Synthesis, modifications, and post-treatment[J]. Ind Eng Chem Res, 2017,56(2): 513-523. [36]Klaysom C, Hermans S, Gahlaut A, et al. Polyamide/polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation[J]. J Membr Sci, 2013,445: 25-33. [37]Cui Y, Liu X Y, Chung T S. Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes[J]. Chem Eng J, 2014,242(8): 195-203. [38]Mansourpanah Y, Alizadeh K, Madaeni S S, et al. Using different surfactants for changing the properties of poly(piperazineamide) TFC nanofiltration membranes[J]. Desalination, 2011,271(1/2/3): 169-177. [39]Sarkar P, Modak S, Karan S. Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration[J]. Adv Funct Mater, 2021,31: 2007054. [40]Liang Y, Zhu Y, Liu C, et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 precision separation[J]. Nat Commun, 2020,11(1): 2015. [41]Gan Q M, Peng L E, Yang Z, et al. Demystifying the role of surfactant in tailoring polyamide morphology for enhanced reverse osmosis performance: Mechanistic insights and environmental implications[J]. Environ Sci Technol, 2023,57(4): 1819-1827. [42]Wu Y, Fang S, Zhang K, et al. Stability mechanism of nitrogen foam in porous media with silica nanoparticles modified by cationic surfactants[J]. Langmuir, 2018,34(27): 8015-8023. [43]Zhang X H, Maeda N, Craig V S. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions[J]. Langmuir, 2006,22(11): 5025-5035. [44]Oeffinger B E, Wheatley M A. Development and characterization of a nano-scale contrast agent[J]. Ultrasonics, 2004,42(1/9): 343-347. [45]Bae Y, Kang S, Kim B H, et al. Nanobubble dynamics in aqueous surfactant solutions studied by liquid-phase transmission electron microscopy[J]. Engineering, 2021,7(5): 630-635. [46]Qiu Z, Han H, Wang T, et al. Nanofoaming by surfactant tunes morphology and performance of polyamide nanofiltration membrane[J]. Desalination, 2023, 552: 116457. [47]Tian Y, Qiu Z, Dai R, et al. Tailoring morphology and performance of polyamide nanofiltration membrane via nanobubble dissolution regulation[J]. Chin Chem Lett, 2025: 111251. [48]Jimenez-Solomon M F, Song Q L, Jelfs K E, et al. Polymer nanofilms with enhanced microporosity by interfacial polymerization[J]. Nat Mater, 2016,15(7): 760-767. [49]Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017,356(6343): 1138-1148. [50]Al-Jeshi S, Neville A. An investigation into the relationship between flux and roughness on RO membranes using scanning probe microscopy[J]. Desalination, 2006,189(1/2/3): 221-228. [51]Hirose M, Minamizaki Y, Kamiyama Y. The relationship between polymer molecular structure of RO membrane skin layers and their RO performances[J]. J Membr Sci, 1997,123(2): 151-156. [52]Jiang C, Zhang L, Li P, et al. Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination[J]. ACS Appl Mater Interfaces, 2020, 12(22): 25304-25315. [53]Pu H, Xue H, Wang X, et al. Regulation of polyamide reverse osmosis membrane structure by nanobubbles: Unraveling the mystery of structure-property relationships[J]. Desalination, 2025: 118681. [54]Stevenson P. Inter-bubble gas diffusion in liquid foam[J]. Curr Opin Colloid Interface Sci, 2010, 15(5): 374-381. [55]Huang Z, Su M, Yang Q, et al. A general patterning approach by manipulating the evolution of two-dimensional liquid foams[J]. Nat Commun, 2017, 8(1): 14110. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号