管式TIF4玻璃膜的制备与CO2/CH4分离性能
作者:刘欢, 金 花 , 李砚硕
单位: 宁波大学 材料科学与化学工程学院, 宁波 315211
关键词: TIF-4; 玻璃膜; 管式载体; 气体分离; CO2分离
DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.001
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(6):1-12

摘要:
 
 MOF 玻璃材料具有非晶态特性、易加工性,以及独特的微孔结构,使其成为制备无晶间缺陷、具有分子筛分性能的膜的优异材料。本研究创新性地采用纳米ZnO修饰技术,在可以实现放大制备和工业化集成的管式载体上成功制备了TIF-4玻璃膜。管式TIF-4玻璃膜在CO2与CH4进料物质的量比为15∶85时,CO2渗透率为1.59×10-9 mol/(m2·s·Pa)(4.61 GPU),CO2/CH4选择性为52.62。此外,管式TIF-4玻璃膜能够在0.1~0.5 MPa压力范围以及25~100 ℃温度范围内保持稳定的分离性能,同时在长达70 d的长期储存和连续运行测试中未出现性能衰减,展现出优异的CO2/CH4分离稳定性。
 
 MOF glass materials possess amorphous characteristics, good processability and unique microporous structures, making them excellent  materials for fabricating defect-free and molecular-sieving membranes. In this study, an innovative ZnO modification technique was employed to successfully prepare TIF-4 glass membranes on tubular supports that allow for scalable fabrication and industrial integration. The resulting tubular TIF-4 glass membrane exhibited a CO2 permeance of 1.59×10-9 mol/(m2·s·Pa) (4.61 GPU)and a CO2/CH4 selectivity of 52.62 under a feed molar ratio of 15∶85. Moreover, the membrane maintained stable separation performance under pressure fluctuations up to 0.5 MPa and across a temperature range of 25~100 ℃. It also showed no performance degradation over a 70 d period of long-term storage and continuous operation, demonstrating outstanding stability in CO2/CH4 separation. 
 
 

基金项目:
宁波市科技创新2025重大专项(2022Z154); 浙江省省属高校基本科研业务费(SJLZ2023004)

作者简介:
刘欢(1998-),女,山东临沂人,硕士,从事MOF玻璃膜的制备及其气体分离性能研究.

参考文献:
  [1]Huang Z, Zhao D L, Shen L, et al. MXenes for membrane separation: from fabrication strategies to advanced applications[J]. Sci Bull, 2024, 69(1): 125-140.
[2]Demirel S E, Li J, Hasan M M F. Membrane separation process design and intensification[J]. Ind Eng Chem Res, 2021, 60(19): 7197-7217.
[3]Castel C, Favre E. Membrane separations and energy efficiency[J]. J Membr Sci, 2018, 548: 345-357.
[4]Wang H, Liu Y, Li J. Designer metal-organic frameworks for size-exclusion-based hydrocarbon separations: progress and challenges[J]. Adv Mater, 2020, 32(44): 2002603.
[5]Wang Z, Qi J, Lu X, et al. Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination [J]. J Membr Sci, 2021, 630: 119327.
[6]Qian Q, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chem Rev, 2020, 120(16): 8161-8266.
[7]Ma Q, Mo K, Gao S, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angew Chem Int Ed, 2020, 59(49): 21909-21914.
[8]Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359.
[9]Li Z, Dai Y, Ruan X, et al. Hierarchical and defect-free metal-organic framework membranes deep-rooted within flexible nanofiber substrate[J]. J Membr Sci, 2024, 712: 123258.
[10]Kwon H T, Kim J, Shon M, et al. Postsynthetic modification strategies to improve polycrystalline metal-organic framework membranes[J]. Mater Today Sustain, 2023, 21: 100296.
[11]Ji S, Li Z, Dai Y, et al. A “Rigid and flexible” molecular sieving membrane constructed by in-situ polymerization of COFs to repair defects in MOF membrane[J]. Sep Purif Technol, 2025, 371: 133253.
[12]Dorosti F, Ge L, Wang H, et al. A path forward: Understanding and mitigating defects in polycrystalline membranes[J]. Prog Mater Sci, 2023, 137: 101123.
[13]宋昊, 张雅婷, 金花, 等. MOF玻璃膜研究进展[J]. 膜科学与技术, 2024, 44(6): 132-144,157.
[14]Sheng L,  Wang C, Yang F, et al. Enhanced C3H6/C3H8 separation performance on MOF membranes through blocking defects and hindering framework flexibility by silicone rubber coating[J]. Chem Commun, 2017, 53(55): 7760-7763.
[15]Bennett T D, Tan J C, Yue Y, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nat Commun, 2015, 6(1): 8079.
[16]Frentzel-Beyme L, Klo M, Kolodzeiski P, et al. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption[J]. J Am Chem Soc, 2019, 141(31): 12362-12371.
[17]Lin R, Chai M, Zhou Y, et al. Metal-organic framework glass composites[J]. Chem Soc Rev, 2023, 52(13): 4149-4172.
[18]Khudozhitkov A E, Ogiwara N, Donoshita M, et al. Dynamics of linkers in metal-organic framework glasses[J]. J Am Chem Soc, 2024, 146(19): 12950-12957.
[19]Horike S, Nagarkar S S, Ogawa T, et al. A new dimension for coordination polymers and metal-organic frameworks: towards functional glasses and liquids[J]. Angew Chem Int Ed, 2020, 59(17): 6652-6664.
[20]Liu H, Xia H, Yao R, et al. Gas transport mechanisms through MOF glass membranes[J]. Adv Membr, 2024, 4: 100104.
[21]Li S, Ma C, Hou J, et al. Highly porous metal-organic framework glass design and application for gas separation membranes[J]. Nat Commun, 2025, 16(1): 1622.
[22]Li N, Ma C, Wang Z, et al. Highly porous MOF integrated with coordination polymer glass membrane for efficient CO2/N2 separation[J]. J Membr Sci, 2025, 715: 123453.
[23]Feng Y, Yan W, Kang Z, et al. Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes[J]. Chem Eng J, 2023, 465: 142873.
[24]Zhang Y T, Wang Y C, Xia  H N, et al. A hybrid ZIF-8/ZIF-62 glass membrane for gas separation[J]. Chem Commun, 2022, 58(68): 9548-9551.
[25]Wang Y, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angew Chem Int Ed, 2020, 59(11): 4395-4399.
[26]Xia H, Jin H, Zhang Y, et al. A long-lasting TIF-4 MOF glass membrane for selective CO2 separation[J]. J Membr Sci, 2022, 655: 120611.
[27]Xie S, Tan X, Xue Z, et al. Cathodic deposition-assisted synthesis of thin glass mof films for high-performance gas separations[J]. Angew Chem Int Ed, 2024, 63(27): e202401817.
[28]Yang Z, Li D, Ao D, et al. Self-supported membranes fabricated by a polymer-hydrogen bonded network with a rigidified MOF framework[J]. J Membr Sci, 2022, 650: 120427.
[29]Ao D, Yang Z, Qiao Z, et al. Metal-organic framework crystal-glass composite membranes with preferential permeation of ethane[J]. Angew Chem Int Ed, 2023, 135(28): e202304535.
[30]Ao D, Yang Z, Chen A, et al. Effective C4 separation by zeolite metal-organic framework composite membranes[J]. Angew Chem Int Ed, 2024, 63(21): e202401118.
[31]李贝贝. NaA型分子筛膜的低成本合成研究[D]. 宁波:宁波大学, 2020.
[32]Hancke R, Larsen T V, Xing W, et al. Ohmically heated ceramic asymmetric tubular membranes for gas separation[J]. J Membr Sci, 2018, 564: 598-604.
[33]Fardazad A M, Azadani L N. Multi objective optimization of the baffle parameters for a tubular membrane[J]. J Taiwan Inst Chem E, 2021, 126: 14-22.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号