| 混合电荷纳滤膜的锂镁分离性能研究 |
| 作者:齐 婷, 位笑娜, 钟 璟 |
| 单位: 常州大学 石油化工学院, 常州 213164 |
| 关键词: 混合电荷膜; 锂镁分离; 纳滤膜; 聚酰胺; 界面聚合 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.002 |
| 分类号: TQ028.8 |
| 出版年,卷(期):页码: 2025,45(6):13-25 |
|
摘要: |
|
随着锂基能源需求的快速增长,高镁锂比盐湖卤水中锂镁的高效分离备受关注。纳滤膜依据孔径筛分和道南排斥效应成为锂镁分离的重要途径,然而单电荷纳滤膜对锂镁离子的分离选择性普遍较低。本研究采用顺序界面聚合策略,成功构筑了具有非对称电荷分布的混合电荷纳滤膜(PEI/PIP-PA与PIP/PEI-PA)。结果表明,混合电荷结构可协同提升锂镁分离性能,两种混合电荷膜对MgCl2的截留率均超过96.0%,其Li+/Mg2+选择性(PEI/PIP-PA: 59.7;PIP/PEI-PA: 41.1)显著优于单电荷PIP-PA膜(9.2)。其中,PIP/PEI-PA膜展现出优异的Li+渗透性,并在长期运行中保持稳定性能。经二级纳滤工艺处理,该膜将高镁锂比盐湖卤水模拟液(Mg2+/Li+质量比为63)中的Mg2+/Li+质量比显著降至0.28,展现出良好的应用潜力。本研究为开发高性能锂镁分离纳滤膜提供了新思路。 |
|
Abstract: With the rapid growth of lithium-based energy demand, the efficient separation of lithium and magnesium in salt lake brines with high Mg2+/Li+ ratios has attracted significant attention. Nanofiltrationmembranes, leveraging size exclusion and Donnan exclusion effects, have emerged as a promising approach for Li+/Mg2+ separation. However, conventional single-charged nanofiltration membranes generally exhibit low selectivity for Li+/Mg2+ separation. In this study, mix-charged nanofiltration membranes with asymmetric charge distribution (PEI/PIP-PA and PIP/PEI-PA) were successfully constructed via sequential interfacial polymerization. The results demonstrated that the mix-charged structure synergistically enhanced Li+/Mg2+ separation performance. Both mix-charged membranes achieved MgCl2 rejection exceeding 96.0%, with Li+/Mg2+ selectivity values of 59.7 for PEI/PIP-PA and 41.1 for PIP/PEI-PA, significantly superior to that of the single-charged PIP-PA membrane (9.2). Notably, the PIP/PEI-PA membrane exhibited excellent Li+ permeability and maintained stable performance during long-term operation. Through a two-stage nanofiltration process, the Mg2+/Li+ mass ratio in the simulated high Mg2+/Li+ ratio brine (Mg2+/Li+ mass ratio 63) was significantly reduced to 0.28, demonstrating strong application potential. This study provides a new strategy for developing high-performance nanofiltration membranes for Li+/Mg2+ separation. |
|
基金项目: |
| 国家自然科学基金项目(22508021); 江苏省自然科学基金资助项目(BK20240973) |
|
作者简介: |
| 齐婷(1995-),女,安徽铜陵人,讲师,博士,主要从事膜材料与膜分离研究 |
|
参考文献: |
| [1]Flexer V, Baspineiro C F, Galli C I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing[J]. Sci Total Environ, 2018, 639: 1188-1204. [2]王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921. [3]Xu S, Song J, Bi Q, et al. Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice[J]. J Membr Sci, 2021, 635: 119441. [4]Peng H, Liu X, Su Y, et al. Advanced lithium extraction membranes derived from tagged-modification of polyamide networks[J]. Angew Chem Int Ed, 2023, 62: e202312795. [5]Wang R, He R, He T, et al. Performance metrics for nanofiltration-based selective separation for resource extraction and recovery[J]. Nature Water, 2022, 1(3): 291-300. [6]Sajna M, Elmakki T, Zavahir S, et al. Enhanced lithium separation from brines using nanofiltration (NF) technology: A review[J]. Desalination, 2024, 592: 118148. [7]Xu R, Kang Y, Zhang W, et al. Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving[J]. Nat Commun, 2023, 14(1): 4907. [8]Li J, Shi Y, Qi C, et al. Charging metal-organic framework membranes by incorporating crown ethers to capture cations for ion sieving[J]. Angew Chem Int Ed, 2023, 62(40): e202309918. [9]Jiang L, Lyu Y, Huang A, et al. Mixed-phase WO3 cocatalysts on hierarchical Si-based photocathode for efficient photoelectrochemical Li extraction[J]. Angew Chem Int Ed, 2023, 62(24): e202304079. [10]Lu X L, Elimelech M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions[J]. Chem Soc Rev, 2021, 50(11): 6290-6307. [11]Luo J, Wan Y. Mix-charged nanofiltration membrane: Engineering charge spatial distribution for highly selective separation[J]. Chem Eng J, 2023, 464: 142689. [12]Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chem Soc Rev, 2019, 48(2): 463-487. [13]Trivedi J S, Bhalani D V, Bhadu G R, et al. Multifunctional amines enable the formation of polyamide nanofilm composite ultrafiltration and nanofiltration membranes with modulated charge and performance[J]. J Mater Chem A, 2018, 6(41): 20242-20253. [14]Wang K P, Wang X M, Januszewski B, et al. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships[J]. Chem Soc Rev, 2022, 51(2): 672-719. [15]Wang E, Liu S, Liu L, et al. Positively charged thin-film composite hollow fiber nanofiltration membrane via interfacial polymerization and branch polyethyleneimine modification for Mg2+/Li+ separation[J]. J Membr Sci Lett, 2023, 3(2): 100061. [16]Peng H, Yu K, Liu X, et al. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes[J]. Nat Commun, 2023, 14(1): 5483. [17]Cheng X, Zhang Y, Shao S, et al. Highly permeable positively charged nanofiltration membranes with multilayer structures for multiple heavy metal removals[J]. Desalination, 2023, 548: 116266. [18]Peng H W, Zhao Q. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Adv Funct Mater, 2021, 31(14): 2009430. [19]Qi T, Chen X, Lu T, et al. Enhancing ion separation efficiency: Janus charged nanofiltration membrane fabricated via polyethyleneimine-manipulated interfacial polymerization[J]. J Membr Sci, 2024, 706: 122930. [20]Chong J Y, Wang R. From micro to nano: Polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration[J]. J Membr Sci, 2019, 587: 117161. [21]Dou P, Liu L, Sun Q, et al. Turing membranes regulated by intermolecular hydrogen bonding for molecular sieving[J]. ACS Nano, 2025, 19(24): 22442-22453. [22]Wu H, Zhao H, Lin Y, et al. Positively-charged PEI/TMC nanofiltration membrane prepared by adding a diamino-silane coupling agent for Li+/Mg2+ separation[J]. J Membr Sci, 2023, 672: 121468. [23]Zhang Y F, Fan Y R, Zhou G L, et al. Based on high cross-linked structure design to fabricate PEI-based nanofiltration membranes for Mg2+/Li+ separation [J]. J Membr Sci, 2024, 693: 122351. [24]Wang M, Dong W, Guo Y, et al. Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy[J]. Desalination, 2021, 513: 114836. [25]Huang F, Lu J, Xiang X, et al. Dual-functional polyethyleneimine engineered interfacial polymerization for ultra-high flux reverse osmosis membranes with moderate salt rejection[J]. Sep Purif Technol, 2025, 368: 132926. [26]Ahmad N A, Goh P S, Wong K C, et al. Accelerated spraying-assisted layer by layer assembly of polyethyleneimine/titania nanosheet on thin film composite membrane for reverse osmosis desalination[J]. Desalination, 2022, 529: 115645. [27]Li M, Li J, Hao T, et al. Tailoring the pore size distribution of nanofiltration membranes via surfactants with different alkyl chain lengths: Towards efficient molecular separation[J]. Sep Purif Technol, 2024, 339: 126494. [28]李燕, 赵有璟, 李志录, 等. 聚酰胺纳滤膜表面羧基密度调控及其抗污染性能[J]. 膜科学与技术, 2024, 44(4): 48-57. [29]Li H, Wang Y, Li T, et al. Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine[J]. Chem Eng J, 2022, 438: 135658. [30]Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Sep Purif Technol, 2017, 186: 233-242. [31]Ashraf M A, Wang J, Wu B, et al. Enhancement in Li+/Mg2+ separation from salt lake brine with PDA-PEI composite nanofiltration membrane[J]. J Appl Polym Sci, 2020, 137(47): e49549. [32]Lu D, Ma T, Lin S, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+[J]. J Membr Sci, 2021, 635: 119504. [33]Wang W, Wang J, Yan Y, et al. Structure and positive charge regulation in nanofiltration membrane by novel nanomaterial g-C3N5 for efficient Li+/Mg2+ separation[J]. J Membr Sci, 2024, 707: 122984. [34]Qi T, Wei X, Chen X, et al. Enhanced polyamide nanofiltration membranes via a dual-reinforcement strategy for efficient Li+/Mg2+ separation[J]. J Membr Sci, 2025, 736: 124662. [35]Zheng L, Song X, Liu J, et al. Crown ether regulated nanocomposite membrane with lithium channels for highly selective Li+/Mg2+ separation[J]. Desalination, 2024, 592: 118121. [36]Dong J, Wang Y, Dong L, et al. Regulating structure of nanofiltration membrane via bi-directional interfacial polymerization for enhanced Li+/Mg2+ separation[J]. J Water Process Eng, 2025, 69: 106759. [37]Jiang C, Bai S, Li J, et al. Crown ether-functionalized nanofiltration membranes with high ions selectivity for Li+/Mg2+ separation[J]. J Membr Sci, 2025, 714: 123372. [38]Guo C, Li N, Qian X, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: “Drag” effect from carboxyl-containing negative interlayer[J]. Sep Purif Technol, 2020, 230: 115567. [39]Hu D, Pan S, Chen Y, et al. Janus charged nanofiltration membranes modified with amino polymer brush for enhanced Mg2+/Li+ separation[J]. Sep Purif Technol, 2025, 361: 131339. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号