吡啶型部分氟化含金刚烷结构聚芳醚膜的制备 及钒液流电池性能研究
作者:张欣妍, 张本贵, 姜思男, 庞欣雨, 李 涛, 杨余超, 张凇玮
单位: 沈阳化工大学 化学工程学院, 沈阳 110142
关键词: 钒液流电池; 离子交换膜; 金刚烷; 全氟联苯; 吡啶
DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.003
分类号: TQ150
出版年,卷(期):页码: 2025,45(6):26-35

摘要:
  钒液流电池(VRFB)具有高本征安全性、容量和功率解耦,在大规模储能领域中显示出很好的应用前景。膜作为VRFB的关键部件对电池性能具有重要影响,现有用于VRFB的膜或价格昂贵或离子传导性有待提升,因此开发新型低成本高性能的膜材料具有重要意义。本研究合成了部分氟化含金刚烷结构聚芳醚,进一步接枝功能化引入吡啶基团,经过溶胀诱导微相分离,获得了吡啶型部分氟化含金刚烷结构聚芳醚膜(PyAPEF)。PyAPEF膜呈现低面电阻(0.13Ω·cm2,与Nafion 212 膜相当)、低溶胀率和高机械强度(>46.42 MPa),优于Nafion 212膜(机械强度17.0 MPa)。在200 mA/cm2下,PyAPEF-140膜在VRFB测试中表现出优秀的能量效率(EE=84.59%),高于Nafion 212膜的EE(80.37%)。此外,PyAPEF-100膜在1 000次循环测试中表现出稳定的电池性能,显示出良好的膜稳定性。本研究制备的PyAPEF膜在VRFB中具有优异的电池效率,在钒液流电池中具有良好应用前景。
 
Vanadium redox flow battery (VRFB) has high intrinsic safety, capacity and power decoupling, and shows good application prospects in the field of large-scale energy storage. As a key component of VRFB, membranes have an important impact on battery performance. Existing membranes used for VRFB are either expensive or have poor ion conductivity. Therefore, it is of great significance to develop new low-cost and high-performance membrane materials. In this study, partially fluorinated adamantane-containing poly(aryl ether) was synthesized, and pyridine groups were further grafted and functionalized. After swelling-induced microphase separation, PyAPEF membranes were obtained. PyAPEF membrane showed low area resistance (0.13 Ω·cm2), low swelling ratio, and high mechanical strength (>46.42 MPa), which was better than Nafion 212 membrane (area resistance 0.13 Ω·cm2, mechanical strength 17.0 MPa). At a current density of 200 mA/cm2, the PyAPEF-140 membrane  showed excellent energy efficiency (EE=84.59%) in the VRFB test, which was higher than that of the Nafion 212 membrane (EE=80.37%). In addition, the PyAPEF-100 membrane showed stable battery performance in 1 000-cycle tests, showing good membrane stability. The PyAPEF membrane prepared in this study achieved excellent battery efficiency in VRFB and has good application prospects in vanadium redox flow battery. 
 
 

基金项目:
国家自然科学基金项目(21706164); 辽宁省自然科学基金面上项目(2023-MS-236); 辽宁省教育厅重点攻关项目(LJKZZ20220056)

作者简介:
张欣妍(2000-),女,辽宁朝阳人,硕士研究生,主要研究方向为钒液流电池用离子交换膜.

参考文献:
 [1]He M, Sun Y, Han B. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality[J]. Angew Chem, 2022, 134:e202112835. 
[2]Yuan Z, Zhu X, Li M, et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications[J]. Angew Chem, 2016, 128:3110-3114.
[3]Chen W, Pang B, Yan X, et al. Oxidized black phosphorus nanosheets/sulfonated poly (ether ether ketone) composite membrane for vanadium redox flow battery[J]. J Membr Sci, 2022, 644:120084.
[4]Xing Y, Geng K, Chu X, et al. Chemically stable anion exchange membranes based on C2-Protected imidazolium cations for vanadium flow battery[J]. J Membr Sci, 2021, 618:118696.
[5]Jiang S, Zhang B, Liu Q, et al. Conductivity-enhanced swelling-induced triphenylphosphine-functionalized adamantane-containing poly(aryl ether ketone) membranes for vanadium redox flow batteries[J]. J Membr Sci, 2024, 707:123023.
[6]Pang B, Chen W, Yu W, et al. Quinone convertible sulfated ion conductive side chain for highly selective vanadium redox flow batteries[J]. J Mater Chem A, 2024, 12(26):15914-15921.
[7]Wang Z, Ren J, Sun J, et al. The anion conductivity of acid-doped polybenzimidazole membrane and utilization in mitigating the capacity decay of vanadium redox flow battery stacks[J]. Chem Eng J, 2023, 474:145621.
[8]Sheng Z, Xiao S, Zeng G, et al. Maximizing flow battery membrane performance via pseudo-nanophase separation enhanced by polymer supramolecular sidechain[J]. J Membr Sci, 2025, 713:123280.
[9]Long J, Huang W, Li H, et al. Cross-linked sulfonated polyimide membranes with excellent proton selectivity and ultra-long cycle life for vanadium flow batteries [J]. J Membr Sci, 2025, 717:123599.
[10]Zhou J, Liu Y, Zuo P, et al. Highly conductive and vanadium sieving microporous Trger’s base membranes for vanadium redox flow battery[J]. J Membr Sci, 2021, 620:118832.
[11]Dai Q, Liu Z, Huang L, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery[J]. Nat Commun, 2020, 11(1):13.
[12]Zhang B, Wang Q, Guan S, et al. High performance membranes based on new 2-adamantane containing poly(aryl ether ketone) for vanadium redox flow battery applications[J]. J Power Sources, 2018, 399:18-25.
[13]Zhang B, Zhao M, Liu Q, et al. Advanced anion exchange membranes with selective swelling-induced ion transport channels for vanadium flow battery application[J]. J Membr Sci, 2022, 642:119985.
[14]Zhang B, Zhang S, Weng Z, et al. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications[J]. J Power Sources, 2016, 325:801-807.
[15]Zhang B, Zhao M, Liu Q, et al. High performance membranes based on pyridine containing poly(aryl ether ketone ketone) for vanadium redox flow battery applications[J]. J Power Sources, 2021, 506:230128.
[16]Lu W, Yuan Z, Zhao Y, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Mater, 2018, 10:40-47.
[17]Wan Y H, Sun J, Jiang H R, et al. A highly-efficient composite polybenzimidazole membrane for vanadium redox flow battery[J]. J Power Sources, 2021, 489:229502.
[18]Yan X, Zhang H, Hu Z, et al. Amphoteric-side-chain-functionalized “ether-free” poly (arylene piperidinium) membrane for advanced redox flow battery[J]. Acs Appl Mater Inter, 2019, 11(47):44315-44324.
[19]Du Y, Gao L, Hu L, et al. The synergistic effect of protonated imidazole-hydroxyl-quaternary ammonium on improving performances of anion exchange membrane assembled flow batteries[J]. J Membr Sci, 2020, 603:118011.
[20]Di M, Xiu Y, Dong Z, et al. Two-dimensional MoS2 nanosheets constructing highly ion-selective composite membrane for vanadium redox flow battery[J]. J Membr Sci, 2021, 623:119051.
[21]Li J, Xu W, Huang W, et al. Stable covalent cross-linked polyfluoro sulfonated polyimide membranes with high proton conductance and vanadium resistance for application in vanadium redox flow batteries[J]. J Mater Chem A, 2021, 9(43):24704-24711.
[22]Zhao Y, Zhang D, Zhao L, et al. Excellent ion selectivity of Nafion membrane modified by PBI via acid-base pair effect for vanadium flow battery[J]. Electrochimica Acta, 2021, 394:139144.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号