硼掺杂DDR分子筛膜的制备与CO2/H2分离性能
作者:周诗航, 李静博, 张玉亭
单位: 南京工业大学 化工学院 材料化学工程国家重点实验室, 南京 211816
关键词: DDR分子筛膜; CO2/H2分离; 硼掺杂; 四硼酸钠; 中空纤维
DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.006
分类号: TQ028.1
出版年,卷(期):页码: 2025,45(6):53-60

摘要:
 DDR分子筛膜因孔径适当、热化学稳定性好等优势在CO2气体分离领域受到关注,但是用于CO2/H2分离仍然存在选择性较低的不足。为了提高DDR分子筛膜的CO2/H2分离性能,本研究以四硼酸钠为硼源,采用二次生长法在四通道Al2O3中空纤维载体表面制备了硼掺杂DDR(B-DDR)分子筛膜。XRD、BET比表面积和FTIR等表征结果都证实了B原子成功掺入DDR分子筛骨架。CO2吸附结果表明硼掺杂提升了DDR分子筛的CO2吸附量。当膜合成液中四硼酸钠物质的量比为0.2时,制备的B0.8-DDR分子筛膜用于298 K等物质的量CO2/H2混合气分离,CO2渗透性为3.60×10-8 mol/(m2·s·Pa),同时分离选择性为15.60,是DDR分子筛膜分离选择性(5.91)的2倍多。降低温度和增加进料压力都有利于提高B-DDR分子筛膜的分离选择性,当CO2进料浓度为50%(体积分数)时,膜的分离选择性最高。此外,B0.8-DDR分子筛膜在水汽环境中仍然保持稳定的CO2/H2分离性能,表明其具有良好的耐水汽稳定性。
 
 DDR zeolite membrane has been attractive in CO2 separation because of its suitable pore size and good thermochemical stability. However, it has limited selectivity in CO2/H2 separation. To address this issue, boron-doped DDR (B-DDR) zeolite membranes were synthesized on four-channel α-Al2O3 hollow fibers by secondary growth using sodium tetraborate as the boron source. The successful doping of B atoms in DDR zeolite framework was confirmed by XRD, BET surface area and FTIR results. The CO2 adsorption results demonstrated that the doping of B atoms improved the CO2 adsorption amount of DDR zeolite. When the molar ratio of sodium tetraborate in precursor was 0.2, the CO2 permeance of the resultant membrane (B0.8-DDR membrane) in the separation of equimolar CO2/H2 mixed gas at 298 K was 3.60×10-8 mol/(m2·s·Pa). The CO2/H2 selectivity of the membrane was 15.60, which was more than twice of that of the DDR zeolite membrane (5.91). Lowering temperature or increasing feed pressure was beneficial for improving separation selectivity of the B-DDR membrane. The maximum CO2/H2 selectivity was achieved when the CO2 feed concentration was 50% (volume fraction). In addition, the membrane maintained stable separation performance under humid environment, indicating the good tolerance of the membrane to water vapor. 
 

基金项目:
国家自然科学基金面上项目(22378192)

作者简介:
周诗航(2004-),男,江苏连云港人,研究方向为分子筛膜制备与分离.

参考文献:
[1]Yang H, Xu Z, Fan M, et al. Progress in carbon dioxide separation and capture: A review[J]. J Environ Sci, 2008, 20(1): 14-27.
[2]Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Appl Therm Eng, 2010, 30(1): 53-62.
[3]Jeon Y W, Lee D H. Gas membranes for CO2/CH4 (biogas) separation: A review[J]. Environ Eng Sci, 2015, 32(2): 71-85.
[4]Haryanto A, Fernando S, Merali N, et al. Current status of hydrogen production techniques by steam reforming of ethanol: A review[J]. Energ Fuel, 2005, 19(5): 2098-2106.
[5]Aasberg-Petersen K, Hansen J H B, Christensen T S, et al. Technologies for large-scale gas conversion[J]. Appl Catal A: Gen, 2001, 221(1/2): 379-387.
[6]Dang C, Long J, Li H, et al. Pd-promoted Ni-Ca-Al bi-functional catalyst for integrated sorption-enhanced steam reforming of glycerol and methane reforming of carbonate[J]. Chem Eng Sci, 2021, 230: 116226.
[7]Voldsund M, Jordal K, Anantharaman R. Hydrogen production with CO2 capture[J]. Int J Hydrogen Energy, 2016, 41(9): 4969-4992.
[8]Ebner A D, Ritter J A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries[J]. Sep Sci Technol, 2009, 44(6): 1273-1421.
[9]Luis P, Van Gerven T, Van der Bruggen B. Recent developments in membrane-based technologies for CO2 capture[J]. Prog Energy Combust Sci, 2012, 38(3): 419-448.
[10]Shen M, Tong L, Yin S, et al. Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review[J]. Sep Purif Technol, 2022, 299: 121734.
[11]Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. J Membr Sci, 2006, 279(1/2): 1-49.
[12]Dai Y, Niu Z, Luo W, et al. A review on the recent advances in composite membranes for CO2 capture processes[J]. Sep Purif Technol, 2023, 307: 122752.
[13]He W, Wang Z, Li W, et al. Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation[J]. J Membr Sci, 2015, 476: 171-181.
[14]Salim W, Ho W S W. Recent developments on nanostructured polymer-based membranes[J]. Curr Opin Chem Eng, 2015, 8: 76-82.
[15]Lin Y S, Duke M C. Recent progress in polycrystalline zeolite membrane research[J]. Curr Opin Chem Eng, 2013, 2(2): 209-216.
[16]Korelskiy D, Ye P, Fouladvand S, et al. Efficient ceramic zeolite membranes for CO2/H2 separation[J]. J Mater Chem A, 2015, 3(23): 12500-12506.
[17]Lei L, Pan F, Lindbrthen A, et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation[J]. Nat Commun, 2021, 12(1): 268.
[18]Wang L, Zhang C, Gao X, et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature[J]. J Membr Sci, 2017, 539: 152-160.
[19]Zhou Y, Du P, Song Z, et al. Synthesis of thin DD3R zeolite membranes on hollow fibers using gradient-centrifuged seeds for CO2/CH4 separation[J]. J Membr Sci Lett, 2023, 3(1): 100038.
[20]Van den Bergh J, Zhu W, Gascon J, et al. Separation and permeation characteristics of a DD3R zeolite membrane[J]. J Membr Sci, 2008, 316: 35-45.
[21]Okazaki J, Hasegawa H, Chikamatsu N, et al. DDR-type zeolite membrane: A novel CO2 separation technology for enhanced oil recovery[J]. Sep Purif Technol, 2019, 218: 200-205.
[22]Zhang P, Gong C, Zhou T, et al. Helium extraction from natural gas using DD3R zeolite membranes[J]. Chin J Chem Eng, 2022, 49: 122-129.
[23]Van den Bergh J, Tihaya A, Kapteijn F. High temperature permeation and separation characteristics of an all-silica DDR zeolite membrane[J]. Micropor Mesopor Mater, 2010, 132: 137-147.
[24]Othman M R, Tan S C, Bhatia S. Separability of carbon dioxide from methane using MFI zeolite-silica film deposited on gamma-alumina support[J]. Micropor Mesopor Mater, 2009, 121: 138-144.
[25]Sebastián V, Kumakiri I, Bredesen R, et al. Zeolite membrane for CO2 removal: Operating at high pressure[J]. J Membr Sci, 2007, 292: 92-97.
 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号