| Sc/Bi共掺杂YSZ电解质膜微结构调控与 性能强化研究 |
| 作者:夏豪骏, 金之豪, 陈献富, 邱鸣慧, 范益群 |
| 单位: 南京工业大学 化工学院, 材料化学工程全国重点实验室, 南京 211816 |
| 关键词: 元素掺杂; 流延成型; YSZ电解质膜 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.008 |
| 分类号: TQ174 |
| 出版年,卷(期):页码: 2025,45(6):70-79 |
|
摘要: |
|
为提升氧化钇稳定氧化锆(YSZ)电解质膜在中温固体氧化物电解池(SOEC)中的应用性能,本研究采用Sc和Bi共掺杂策略,结合流延成型工艺,对YSZ电解质膜致密化行为及电化学性能进行协同调控。通过调控Sc/Bi的掺杂比和总掺杂浓度,探究了其对电解质膜烧结特性、微观结构和离子传导性能的影响。研究结果表明,当Sc/Bi掺杂比为6∶4,总掺杂浓度为10%时,电解质膜在1 400 ℃烧结条件下获得了优异的致密结构,相对致密度超过96%,并在600~800 ℃范围内表现出优异的氧离子导电性能(800 ℃下电导率为5.35×10-2 S/cm)。XPS分析显示,该掺杂体系显著提升了氧空位与O-H基团的含量,优化了氧离子迁移路径。同时,流延成型工艺通过改善Bi在晶界处的偏析,进一步降低了晶界阻抗,实现了较低的活化能(0.52 eV)。本研究提出的Sc/Bi共掺杂耦合流延成型工艺,有效解决了传统YSZ电解质膜在中温下性能不足的问题,为SOEC电解质的中温化发展提供了可行的新路径和材料支持。 |
|
To enhance the performance of yttria-stabilized zirconia (YSZ) electrolyte membranes in intermediate-temperature solid oxide electrolysis cells (SOECs), this study employed a co-doping strategy with Sc and Bi, combined with the tape-casting process, to synergistically regulate the densification behavior and electrochemical performance of YSZ electrolyte membranes. By regulating the Sc/Bi doping ratio and total doping concentration, the effects on sintering characteristics, microstructure and ionic conductivity of the electrolyte membranes were systematically investigated. The results demonstrated that at a Sc/Bi ratio of 6∶4 and a total doping concentration of 10%, the electrolyte membrane achieved a highly dense structure with a relative density exceeding 96% after sintering at 1 400 ℃, along with outstanding oxygen-ion conductivity in the temperature range of 600~800 ℃ (reaching 5.35×10-2 S/cm at 800 ℃). XPS analysis revealed that this doping system significantly enhanced the content of oxygen vacancies and O-H groups, thereby optimizing oxygen-ion transport pathways. In addition, the tape-casting process further reduced grain boundary resistance by mitigating Bi segregation near grain boundaries, resulting in a relatively low activation energy (0.52 eV). In conclusion, the strategy of Sc/Bi co-doping combined with tape-casting proposed in this work effectively addresses the performance limitations of conventional YSZ electrolytes under intermediate temperatures, offering a feasible new pathway and material support for the development of intermediate-temperature SOEC electrolytes. |
|
基金项目: |
| 国家自然科学基金(U22A20410) |
|
作者简介: |
| 夏豪骏(1999-),男,江苏常州人,硕士研究生,主要研究方向为膜材料应用与研究. |
|
参考文献: |
| [1]Hauch A, Küngas R, Blennow P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118. [2]Nechache A, Hody S. Alternative and innovative solid oxide electrolysis cell materials: A short review[J]. Renewable Sustainable Energy Rev, 2021, 149: 111322. [3]Choe C, Cheon S, Gu J, et al. Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source[J]. Renewable Sustainable Energy Rev, 2022, 161: 112398. [4]Nechache A, Cassir M, Ringuedé A. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review[J]. J Power Sources, 2014, 258: 164-181. [5]史普鑫, 栾丽萍, 刘新磊. 面向绿氢生产的膜技术研究进展[J]. 膜科学与技术, 2023, 43(6): 128-138. [6]Gu J, Zhang X, Zhao Y, et al. Advances and challenges in symmetrical solid oxide electrolysis cells: materials development and resource utilization[J]. Mater Chem Front, 2023, 7(18): 3904-3921. [7]Fergus J W. Electrolytes for solid oxide fuel cells[J]. J Power Sources, 2006, 162(1): 30-40. [8]Laguna-Bercero M A, Campana R, Larrea A, et al. Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation[J]. J Power Sources, 2011, 196(21): 8942-8947. [9]刘丽伟. Bi2O3/YSZ和Bi2O3/YbSZ电解质的合成制备和表征[D].杭州:浙江大学,2016. [10]Lyu Z G, Yao P, Guo R S, et al. Study on zirconia solid electrolytes doped by complex additives[J]. Mater Sci Eng A, 2007, 458(1): 355-360. [11]Luca S, Grazia A, Emilio A, et al. Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications[J]. AIMS Mater Sci, 2019, 6(4): 610-620. [12]韩敏芳, 李伯涛, 彭苏萍, 等. SOFC电解质薄膜YSZ制备技术[J]. 电池, 2002, (3): 156-158. [13]Wang Z, Qian J, Cao J, et al. A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)[J]. J Alloys Compd, 2007, 437(1): 264-268. [14]Belmonte M. Advanced ceramic materials for high temperature applications[J]. Adv Eng Mater, 2006, 8(8): 693-703. [15]张烁烁, 王洁, 马晓娟, 等. 燃料电池全氟质子增强膜的制备及其化学降解机理研究[J]. 膜科学与技术, 2020, 40(5): 39-46. [16]Wang S, Jiang Y, Zhang Y, et al. Electrochemical performance of mixed ionic-electronic conducting oxides as anodes for solid oxide fuel cell[J]. Solid State Ionics, 1999, 120(1): 75-84. [17]Liu J, Liu W, Lu Z, et al. Study on the properties of YSZ electrolyte made by plaster casting method and the applications in solid oxide fuel cells[J]. Solid State Ionics, 1999, 118(1): 67-72. [18]Zhu B, Meng G, Mellander B E. Non-conventional fuel cell systems: new concepts and development[J]. J Power Sources, 1999, 79(1): 30-36. [19]Baquero T, Escobar J, Frade J, et al. Aqueous tape casting of micro and nano YSZ for SOFC electrolytes[J]. Ceram Int, 2013, 39(7): 8279-8285. [20]Albano M P, Garrido L B. Aqueous tape casting of yttria stabilized zirconia[J]. Mater Sci Eng A, 2006, 420(1): 171-178. [21]Moreno V, Hotza D, Greil P, et al. Dense YSZ laminates obtained by aqueous tape casting and calendering[J]. Adv Eng Mater, 2013, 15(10): 1014-1018. [22]赵芃, 谢光远, 宗红军, 等. 氧化锆PVA-水基流延成型工艺研究[J]. 硅酸盐通报, 2016, 35(10): 3336-3339. [23]Babar Z U D, Hanif M B, Gao J T, et al. Sintering behavior of BaCe0.7Zr0.1Y0.2O3-δ electrolyte at 1 150 ℃ with the utilization of CuO and Bi2O3 as sintering aids and its electrical performance[J]. Int J Hydrogen Energy, 2022, 47(11): 7403-7414. [24]Selvaraj T, Johar B, Khor S F. Iron/zinc doped 8mol% yttria stabilized zirconia electrolytes for the green fuel cell technology: A comparative study of thermal analysis, crystalline structure, microstructure, mechanical and electrochemical properties[J]. Mater Chem Phys, 2019, 222: 309-320. [25]Qin G, Bao J, Gao J, et al. Enhanced grain boundary conductivity of Gd and Sc co-doping BaZrO3 proton conductor for proton ceramic fuel cell[J]. Chem Eng J, 2023, 466: 143114. [26]Liu L, Zhou Z, Tian H, et al. Effect of bismuth oxide on the microstructure and electrical conductivity of yttria stabilized zirconia[J]. Sensors, 2016,16(3):369. [27]Yeh T H, Kusuma G E, Suresh M B, et al. Effect of sintering process on the microstructures of Bi2O3-doped yttria stabilized zirconia[J]. Mater Res Bull, 2010, 45(3): 318-323. [28]Syed K, Xu M, Ohtaki K K, et al. Correlations of grain boundary segregation to sintering techniques in a three-phase ceramic[J]. Materialia, 2020, 14: 100890. [29]Tong J, Clark D, Bernau L, et al. Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method[J]. Solid State Ionics, 2010, 181(33): 1486-1498. [30]Chen G, Luo Y, Sun W, et al. Electrochemical performance of a new structured low temperature SOFC with BZY electrolyte[J]. Int J Hydrogen Energy, 2018, 43(28): 12765-12772. [31]Kumari L, Li W Z, Xu J M, et al. Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties[J]. Cryst Growth Des, 2009, 9(9): 3874-3880. [32]刘继进, 何莉萍, 陈宗璋, 等. 氧化钇掺杂四方氧化锆电性能的研究[J]. 硅酸盐学报, 2003, (3): 241-245. [33]Cheng Y Y, Zhou L, Liu J X, et al. Grain growth inhibition by sluggish diffusion and zener pinning in high-entropy diboride ceramics[J]. J Am Ceram Soc, 2023, 106(8): 4997-5004. [34]Bowman W J, Kelly M N, Rohrer G S, et al. Enhanced ionic conductivity in electroceramics by nanoscale enrichment of grain boundaries with high solute concentration[J]. Nanoscale, 2017, 9(44): 17293-17302. [35]Li L, Roncal-Herrero T, Harrington J, et al. Anomalous grain boundary conduction in BiScO3-BaTiO3 high temperature dielectrics[J]. Acta Materialia, 2021, 216: 117136. [36]Romaguera Y, Leyet Y, Guerrero F, et al. Influence of Bi3+ cation on microstructure and electrical properties of the ZnO ceramics[J]. Rev Cubana Quim, 2009,21(3): 47-75. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号