基于PMP中空纤维膜组件的膜曝气生物膜 反应器性能研究
作者:李文俊, 周 玥, 胡鸿俊, 汪朝晖, 汪效祖, 崔朝亮
单位: 1. 南京工业大学 化工学院,材料化学工程国家重点实验室,南京 211816; 2. 南京工业大学 国家特种分离膜工程技术研究中心,南京 211816
关键词: 膜曝气生物膜反应器; 聚4-甲基-1-戊烯; 中空纤维膜; 操作条件
DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.015
分类号: TQ330.9
出版年,卷(期):页码: 2025,45(6):138-147

摘要:
本研究对四种不同的聚4-甲基-1-戊烯(PMP)中空纤维膜进行气通量、泡点、拉伸强度等性能表征,其中M1、M2属于致密膜,M3、M4属于微孔膜,对四种膜进行了挂膜实验。选用了氧气通量最大、生物膜生长较快的M4中空纤维膜组件,分别研究了填充密度、曝气压力和水力停留时间对MABR处理性能的影响。研究结果表明,填充密度为100 m2/m3、曝气压力为40 kPa、HRT为10 h时,系统达到最佳处理效果,处理量分别为11 g COD/(m2·d)和0.72 g NH+4-N/(m2·d)。
 
 
 
This study characterized the performance of four different poly(4-methyl-1-pentene) (PMP) hollow fiber membranes, including gas flux, bubble point and tensile strength, and conducted biofilm colonization experiments. The M4 hollow fiber membrane module, which demonstrated the maximum oxygen flux and favorable biofilm growth was selected. Subsequent experiments investigated the effects of various process parameters on the treatment performance of this module.  Subsequently, the influences of packing density, aeration pressure and HRT on the MABR treatment performance were systematically examined. The results indicated that under optimal conditions - a packing density of 100 m2/m3, an aeration pressure of 40 kPa, and an HRT of 10 h - the system achieved peak treatment efficiency, with handling capacity of 11 g COD/(m2·d) and 0.72 g NH+4-N/(m2·d). 
 
 

基金项目:
国家自然科学基金(22078146)

作者简介:
李文俊(2001-),男,江西抚州人,硕士研究生,主要研究方向为材料与化工.

参考文献:
[1]Lan M, Li M, Liu J, et al. Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system[J]. Bioresour Technol, 2018, 270: 120-128.
[2]Rosso D, Stenstrom M K, Larson L E. Aeration of large-scale municipal wastewater treatment plants: state of the art[J]. Water Sci Technol, 2008, 57(7): 973-978.
[3]Casey E, Glennon B, Hamer G. Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor[J]. Biotechnol Bioeng, 1999, 62(2): 183-192.
[4]Brindle K, Stephenson T, Semmens M J. Pilot-plant treatment of a high-strength brewery wastewater using a membrane-aeration bioreactor[J]. Water Environ Res, 1999, 71(6): 1197-1204.
[5]Li T, Bai R, Ohandja D G, et al. Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor[J]. Biodegradation, 2009, 20(4): 569-580.
[6]Tian H L, Zhang H M, Li P, et al. Treatment of pharmaceutical wastewater for reuse by coupled membrane-aerated biofilm reactor (MABR) system[J]. Rsc Adv, 2015, 5(85): 69829-69838.
[7]Uri-Carreo N, Nielsen P H, Gernaey K V, et al. Nitrous oxide emissions from two full-scale membrane-aerated biofilm reactors[J]. Sci Total Environ, 2024, 908: 168030.
[8]He H Q, Daigger G T. The hybrid MABR process achieves intensified nitrogen removal while N2O emissions remain low[J]. Water Res, 2023, 244: 120458.
[9]Kinh T C, Riya S, Hosomi M, et al. Identification of hotspots for NO and N2O production and consumption in counter- and co-diffusion biofilms for simultaneous nitrification and denitrification[J]. Bioresour Technol, 2017, 245(PA): 318-324.
[10]He H Q, Wagner B M, Carlson A L, et al. Recent progress using membrane aerated biofilm reactors for wastewater treatment[J]. Water Sci Technol, 2021, 84(9): 2131-2157.
[11]Nick L, Arifur R, Audra M, et al. Performance of a lab-scale membrane aerated biofilm reactor treating nitrogen dominant space-based wastewater through simultaneous nitrification-denitrification[J]. J Environ Chem Eng, 2020, 9(1): 104644.
[12]Yeh S J,Jenkins C R. Pure oxygen fixed film reactor[J]. J Environ Eng Div, 1978, 104(4): 611-623.
[13]曾庆楠, 吴云, 张宏伟, 等. 膜材料对膜曝气生物膜反应器性能影响的比较[J]. 化工学报, 2016, 67(4): 1483-1489.
[14]Li J, Yan W, Zheng S, et al. Qualitative and quantitative analysis of impacts of microporous, dense and composite membranes on nitrifier/denitrifier distribution and performance of MABRs[J]. Chem Eng J, 2025, 505: 159175.
[15]Hu L, Liu B, Li B, et al. Investigation of membrane-aerated biofilm reactor (MABR) for the treatment of crude oil wastewater from offshore oil platforms[J]. Desalin Water Treat, 2014, 57(9): 3861-3870.
[16]Li Y, Zhang K. Pilot scale treatment of polluted surface waters using membrane-aerated biofilm reactor (MABR)[J]. Biotechnol Biotecl Eq, 2017, 32(2): 376-386.
[17]Wei X,Li B A, Zhao S, et al. COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR)[J]. J Membr Sci, 2011, 389: 257-264.
[18]Castrillo M, Díez-Montero R, Esteban-García A, et al. Mass transfer enhancement and improved nitrification in MABR through specific membrane configuration[J]. Water Res, 2019, 152: 1-11.
[19]Arellano-García L, Mendiola-Chávez M, Velázquez-Fernández J B. Nitrification of an anaerobic filter effluent in a flat sheet membrane aerated biofilm reactor[J]. Biochem Eng J, 2024, 201: 109121.
[20]Perez-Calleja P, Aybar M, Picioreanu C, et al. Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies[J]. Water Res, 2017, 121: 349-360.
[21]Ma Y J, Piscedda A, Veras A D L C, et al. Intermittent aeration to regulate microbial activities in membrane-aerated biofilm reactors: Energy-efficient nitrogen removal and low nitrous oxide emission[J]. Chem Eng J, 2022, 433: 133630.
[22]Tal E, Philipsen M H, Carlos D, et al. Exploring the effects of intermittent aeration on the performance of nitrifying membrane-aerated biofilm reactors[J]. Sci Total environ, 2023, 891: 164329.
[23]Ukaigwe S, Zhang Y D, Liu Y. Establishing stable nitritation in MABR through aeration control[J]. J Environ Eng, 2024, 150(4): 04024005.
[24]Downing L S, Nerenberg R. Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane-aerated biofilm[J]. Biotechnol Bioeng, 2008, 101(6): 1193-1204.
[25]Tian H L, Zhao J Y, Zhang H Y, et al. Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor[J]. Appl Microbiol Biotechnol, 2015, 99(7): 3279-3290.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号