| 碟式陶瓷膜浓缩大豆蛋白及膜污染清洗研究 |
| 作者:陈柏义, 李贵祥, 曾冬清, 姚 萌, 洪昱斌 |
| 单位: 三达膜科技(厦门)有限公司, 厦门 361022 |
| 关键词: 碟式陶瓷膜; 大豆蛋白; 非牛顿流体; 膜污染; 美拉德反应 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.016 |
| 分类号: TQ028.8 |
| 出版年,卷(期):页码: 2025,45(6):148-154 |
|
摘要: |
|
针对现有膜技术浓缩大豆蛋白的浓缩倍数低,无法满足后续干燥进料要求,造成后续干燥能耗高的问题,本研究采用碟式陶瓷膜和管式陶瓷膜进行大豆蛋白浓缩,进一步探讨了碟式陶瓷膜孔径、跨膜压差和转速对浓缩大豆蛋白的影响,并研究了不同清洗方法对膜通量恢复的影响。结果表明:管式陶瓷膜可以浓缩2倍左右,碟式陶瓷膜可以浓缩4倍左右,管式陶瓷膜浓缩液固形物含量最高达到9.4%,碟式陶瓷膜浓缩液固形物含量最高可达19.2%,碟式陶瓷膜浓缩液可达到后续干燥进料要求。当采用100 nm孔径、0.2 MPa跨膜压差和300 r/min以上转速的操作条件时,碟式陶瓷膜运行通量大,效率高。且在糖类和蛋白质共同污染情况下,采用物理和化学方法去除底物,降低碱洗温度和缩短碱洗时间可抑制美拉德反应晚期时类黑精的生成,实现了碟式陶瓷膜的清洗恢复。该研究可为食品、饮料、医药、酶制剂、发酵和植物提取等领域的非牛顿流体类型物料提供一种绿色高效的高倍数浓缩路径,同时可为蛋白质和糖类共同污染的情况提供清洗方法指导。 |
|
A critical challenge of conventional membrane technologies in concentrating soybean protein solutions is their low concentration factors, which fail to meet the required feed concentration for subsequent drying and result in high energy costs. This study employed the disk ceramic membrane to concentrate soybean protein, and compared it with the tubular ceramic membrane. Operating parameters (pore sizes, transmembrane pressures, and rotation speeds) of the disk ceramic membrane and flux recovery performance using different cleaning methods were investigated. Results showed that the tubular ceramic membrane concentrated soybean protein solutions by about 2 times, while the disk ceramic membrane achieved approximately 4 times concentration. The maximum solid content of the concentrated solutions from the tubular ceramic membrane was 9.4%. In comparison, the disk ceramic membrane reached 19.2%. The concentrated solutions of the disk ceramic membrane met feed requirements of subsequent drying. It maintained higher permeation flux and concentration efficiency under optimized conditions (100 nm pore size, 0.2 MPa transmembrane pressure, and ≥300 r/min rotation speed). Membrane fouling, caused by the coexistence of saccharides and proteins, was mostly removed through integrated physical and chemical cleaning methods. The formation of melanoidins in the final stage of the Maillard reaction was inhibited by shortening the time and lowering the temperature during alkaline cleaning. The water flux of the disk ceramic membrane was successfully recovered. This study offers a green and highly efficient approach with high concentration factors for non-Newtonian fluids in fields, such as food, beverages, pharmaceuticals, enzymes, fermentation and plant extracts. It also provides cleaning guidance for membrane fouling caused by the coexistence of saccharides and proteins. |
|
基金项目: |
| 2024年厦门市重大科技计划项目(3502Z2024QY014) 陈柏义(1992-),男,福建漳平人,工程师,硕士研究生,主要研究方向为膜组件与应用开发. |
|
作者简介: |
| 陈柏义(1992-),男,福建漳平人,工程师,硕士研究生,主要研究方向为膜组件与应用开发. |
|
参考文献: |
| [1]江连洲, 吴海波, 王秋京. 酶解改性大豆蛋白的膜过滤制备技术研究[J]. 中国油脂, 2010, 35(11): 23-27. [2]戴海平, 孙方, 李泓, 等. 超滤浓缩大豆蛋白工艺中的膜污染清洗方法研究[J]. 天津轻工业学院学报,2003, 18(4): 8-10. [3]Vishwanathan K H, Govindaraju K, Singh V, et al. Production of okara and soy protein concentrates using membrane technology[J]. J Food Sci, 2011, 76(1): 158-164. [4]郑志雄. 大豆分离蛋白喷雾干燥过程中的热变性及其抑制机理研究[D]. 广州: 华南理工大学, 2011. [5]郭庆强, 焦锋, 郭天骏, 等. 一种生产大豆分离蛋白的喷雾干燥工艺:201910040940.6[P].2019-04-05. [6]Shallo H E, Rao A, Ericson A P, et al. Preparation of soy protein concentrate by ultrafiltration[J]. J Food Sci,2001, 66(2): 242-246. [7]Jaffrin M Y. Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update [J]. Curr Opin Chem Eng, 2012, 1(2): 171-177. [8]Ding L, Jaffrin M Y, Luo J. Chapter two - dynamic filtration with rotating disks, and rotating or vibrating membranes[M]// Progress in Filtration and Separation, Academic Press, 2015: 27-59. [9]白玲, 蓝伟光, 万金保. 双轴旋转膜组件应用于浸没式厌氧膜生物反应器的研究[J]. 南昌大学学报(科版), 2010, 32(3): 218-222. [10]刘光华, 常启兵, 何世斌, 等. 高性能碟式陶瓷膜在油水乳液分离中的研究[J]. 膜科学与技术, 2022,42(2): 72-77. [11]刘彬彬, 李敬, 苏仪, 等. 旋转超滤膜组件澄清乳酸发酵液膜污染研究[C]//第四届中国膜科学与技术报告会,2010. [12]Schfer J, Bast R, Atamer Z, et al. Concentration of skim milk by means of dynamic filtration using overlapping rotating ceramic membrane disks[J]. Int Dairy J, 2018, 78: 11-19. [13]Rayess Y E, Manon Y, Jitariouk N, et al. Wine clarification with rotating and vibrating filtration (RVF): Investigation of the impact of membrane material, wine composition and operating conditions[J]. J Membr Sci,2016, 513: 47-57. [14]Zhang W, Ding L, Grimi N, et al. Application of UF-RDM (ultafiltration rotating disk membrane) module for separation and concentration of leaf protein from alfalfa juice: optimization of operation conditions[J]. Sep Purif Technol, 2017, 175: 365-375. [15]裴少芬, 王晓霞, 钟亮, 等. 旋转圆盘型陶瓷膜过滤绿茶浸提液的研究[J]. 中国茶叶加工, 2015(4): 46-49. [16]徐舟. 旋转圆盘动态膜过滤系统的计算流体力学研究[D]. 大连: 大连理工大学, 2009. [17]田少君, 雷继鹏, 孙阿鑫. 大豆蛋白的流变特性及其黏度的数学模型研究[J]. 中国粮油学报, 2005(2): 53-56. [18]汪勇, 唐书泽, 张志森, 等. 无机陶瓷膜超滤法制备大豆分离蛋白的研究[J]. 中国油脂, 2003, 28(12):19-22. [19]曲家妮. 大豆蛋白分级分离工艺的研究[D]. 广州: 华南理工大学, 2010. [20]杨国龙, 赵谋明, 杨晓泉, 等. 大豆蛋白超滤过程中膜清洗方法的研究[J]. 食品工业科技, 2005(6): 92-95. [21]朱传柳, 赵士明, 章小同, 等. 新型孔径陶瓷膜澄清棒酸发酵液的研究[J]. 中国抗生素杂志, 2019, 44(8): 924-929. [22]薛远, 宋春丽, 任健. 美拉德反应调控大豆蛋白功能性质的研究进展[J]. 现代食品, 2022, 28(9): 4-8. [23]丁欣悦, 张国文. 湿法美拉德反应与转谷氨酰胺酶交联对大豆分离蛋白功能性质的影响[J]. 南昌大学学报(理科版), 2017, 41(5): 464-469. [24]王鲁慧, 肖军霞, 徐同成, 等. 湿热条件下大豆分离蛋白与葡萄糖、麦芽糖的美拉德反应[J]. 食品科学,2018, 39(16): 19-26. [25]李林, 卢家炯. 美拉德反应的抑制及消除方法[J]. 广西轻工业, 2000(4): 16-18. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号