燃煤电厂脱硫废水超滤预处理过程及其 膜污染动态演变机制研究
作者:吴伟涛, 桂双林, 张道华, 付嘉琦, 陈 涛, 王一雯, 郑利兵, 魏源送
单位: 1. 南昌大学 资源与环境学院, 鄱阳湖环境与资源利用教育部重点实验室, 南昌 330047; 2. 中国科学院生态环境研究中心, 水污染控制实验室, 北京 100085; 3. 江西省科学院能源研究所, 南昌 330096; 4. 江西省碳中和研究中心, 南昌 330096; 5. KU Leuven, Leuven 3001
关键词: 脱硫废水; 超滤; 通量衰减; Hermia模型; 膜污染
DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.017
分类号: X703.1;TQ028
出版年,卷(期):页码: 2025,45(6):155-165

摘要:
 脱硫废水中悬浮物的高效稳定去除是燃煤电厂废水零排放的关键难题。本研究采用超滤(UF)去除脱硫废水中的悬浮物,探讨膜孔径和材料对分离性能的影响,重点解析膜通量衰减及膜污染演变过程。研究结果表明,不同类型UF膜均可通过形成滤饼层高效截留悬浮物,截留率在99%以上。但膜孔径和材料会显著影响膜通量衰减过程,初始通量增加将加速通量衰减,并影响膜污染形成机制。Hermia模型分析表明,UF初期膜污染以中间堵塞为主,其后逐渐转为滤饼层控制。膜孔径增大会延迟这一转变时间,其核心原因是大孔径的膜在运行初期更多颗粒物进入膜孔内部,因此延缓了滤饼层形成的时间。膜材料显著影响初期污染机制及后续转变过程:初期污染PES膜以完全堵塞为主,PS和PVDF膜则是以中间堵塞为主,而PAN膜则经历标准堵塞→中间堵塞→滤饼模型的三步演变。本研究解析了UF过程膜通量衰减的关键机制,为脱硫废水的UF过程提供了理论支撑
 
 
The efficient and stable removal of suspended solids (SS) from desulfurization wastewater is a critical challenge for achieving zero liquid discharge (ZLD) of coal-fired power plants. In this study, ultrafiltration (UF) was employed to remove SS from the desulfurization wastewater, and the effects of membrane pore size and material on the separation performance were systematically investigated, with a focus on the flux decline and the dynamic evolution of membrane fouling. It was found that all UF membranes achieved high SS rejection (>99%) through cake layer formation, demonstrating the potential of UF in desulfurization wastewater treatment. However, the pore size and material significantly influenced the flux decline process. Increasing the initial flux would  lead to a rapid flux decline and significantly influence the fouling layer formation process. Hermia model revealed a two-stage transition in fouling mechanism in UF: the intermediate blocking was the leading mechanism at the beginning, which turned to cake layer filtration in the final stage due to the accumulation of SS. The transition stage was delayed for membrane with larger pores, which was attributed to the more particles accumulated into the membrane pores before cake layer formation for the low rejection and high flux. Meanwhile, membrane material also influenced both the initial fouling mechanism and the subsequent transition: complete pore blocking was the main mechanism for PES membrane,  and  intermediate blocking was the main mechanism for PVDF and PS membranes. What also worth noting is that the PAN membrane underwent a three-stage fouling mechanism transition from standard blocking to intermediate blocking, and followed by cake layer model  at the last stage. This study reveals the dynamic fouling and flux decline mechanism in UF process, which can provide theoretical supports for the application of UF in desulfurization wastewater.  
 

基金项目:
江西省科学院省级财政科研项目经费包干制试点示范项(2023YSBG10004); 北京市科技新星项目(20240484679); 江西省科学院省级科研院基础研究与人才类科研经费项目(2022YYBG18)

作者简介:
吴伟涛 (2001-) ,男,江西抚州人,硕士研究生,研究方向为膜法水处理技术.

参考文献:
 [1]郑利兵, 魏源送, 焦赟仪, 等. 零排放形势下热电厂脱硫废水处理进展及展望[J]. 化学工业与工程, 2019, 36(1): 24-37.
[2]陈海杰, 麻晓越, 魏新, 等. 脱硫废水浓缩液旋转喷雾蒸发及其产物特性研究[J]. 动力工程学报, 2024, 44(10): 1656-1662.
[3]黄开龙, 杨庆, 潘赫男, 等. 燃煤电厂脱硫废水资源化技术研究进展[J]. 能源环境保护, 2023, 37(1): 157-166.
[4]刘静颖, 贾阳杰, 杨凤玲, 等. 燃煤电厂脱硫废水零排放预处理工艺研究进展[J]. 无机盐工业, 2023, 55(12): 12-25.
[5]何绪文, 张斯宇, 何灿. 焦化废水深度处理现状及技术进展[J]. 煤炭科学技术, 2020, 48(1): 100-107.
[6]童裕佳, 刘桂娟, 李佳尧, 等. 井下煤矿采出水回用陶瓷膜集成工艺研究[J]. 膜科学与技术, 2024, 44(4): 96-104.
[7]王怀林, 云金明, 吴欢, 等. 膜分离技术在脱硫废水零排放处理中的应用研究[J]. 膜科学与技术, 2018, 38(6): 105-110.
[8]王远远, 王仪, 黄思怡, 等. 高盐有机废水超滤处理的膜污染机制和分离效果研究[J]. 膜科学与技术, 2024, 44(6): 26-36.
[9]Chen Y, Zhang R, Wu G, et al. Thermodynamic mechanism insights into the dynamic evolution of nanofiltration membrane fouling: Effect of calcium ion on organic fouling[J]. Desalination, 2023, 568: 117036.
[10]Yuan W, Chen X, Yu Z, et al. Critical review of membrane fouling in reverse osmosis treatment: Characterizations, models, mechanisms, and controls[J]. Sep Purif Technol, 2025, 363: 132119.
[11]雷宏军, 杨光, 潘红卫, 等. 水化学离子对溶解有机物三维荧光光谱影响及分类预处理方法[J]. 光谱学与光谱分析, 2024, 44(1): 134-140.
[12]Corbatón-Báguena M J, Vincent-Vela M C, Gozálvez-Zafrilla J M, et al. Comparison between artificial neural networks and Hermia’s models to assess ultrafiltration performance[J]. Sep Purif Technol, 2016, 170: 434-444.
[13]Lin J C T, Wang T, Ku Y H, et al. Profiling vertical distribution of scalants in RO membranes by LA-ICP-MS and fouling models[J]. Sep Purif Technol, 2014, 136: 296-302.
[14]Shimizu Y, Okuno Y I, Uryu K, et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment[J]. Water Research, 1996, 30(10): 2385-2392.
[15]陈简素璇, 戴若彬, 田晨昕, 等. 多孔纳米材料改性水处理超滤膜的研究进展[J]. 化工进展, 2022, 41(1): 264-276.
[16]吕佳洋, 宋宏臣, 王建明, 等. 不同结构的聚醚砜膜过滤阻力分析及耐碱性能研究[J]. 化工新型材料, 2024, 52(1): 258-263,269.
[17]Jacquin C, Lesage G, Traber J, et al. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR)[J]. Water Research, 2017, 118: 82-92.
[18]曾凯亮, 汪朝晖, 崔朝亮, 等. 超滤膜在处理农药废水过程中的膜污染行为分析[J]. 膜科学与技术, 2018, 38(2): 98-105.
[19]李维佳, 李宏深. 原水颗粒物对超滤膜通量的影响及其污染机理[J]. 净水技术, 2014, 33(3): 41-47.
[20]Niu B, Yang L, Meng S, et al. Time-dependent analysis of polysaccharide fouling by Hermia models: Reveal the structure of fouling layer[J]. Sep Purif Technol, 2022, 302: 122093.
[21]熊勤梅, 肖胜舰, 黄钧, 等. 发酵型青梅酒的微滤:膜污染分析与品质评价[J]. 食品与发酵工业, 2020, 46(15): 77-83.
[22]Heidari S, Amirinejad M, Jahangirian H. Investigation of fouling mechanisms using surface morphology and physicochemical membrane features [J]. Chem Eng Technol, 2019, 42(6): 1310-1320.
[23]李方, 吴亮, 杨波, 等. 盐类对模拟胞外聚合物(EPS)膜污染的影响[J]. 环境工程学报, 2014, 8(3): 839-844.
[24]张云. 中药模拟溶液超滤过程的膜污染解析及分离机制研究[D]. 南京:南京中医药大学,2022.
[25]Duan M, Wang Z, Xu J, et al. Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance[J]. Sep Purif Technol, 2010, 75(2): 145-155.
[26]王晨宇, 吕晓龙, 谷杰, 等. 抗污染PVDF-CTFE膜耦合亲水改性研究[J]. 膜科学与技术, 2024, 44(4): 123-129,139.
[27]Chen Y, Nan J. Magnetic nanoparticle loading and application of weak magnetic field to reconstruct the cake layer of coagulation-ultrafiltration process to achieve efficient antifouling: Performance and mechanism analysis[J]. Water Research, 2024, 254: 121435.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号