| 多孔有机聚合物的制备及其CO2分离膜的研究进展 |
| 作者:牛宏霞, 张新儒, 王永洪 |
| 单位: 1. 太原理工大学 化学与化工学院, 太原 030024; 2. 气体能源高效清洁利用山西省重点实验室, 太原 030024 |
| 关键词: 膜; 气体分离; 多孔有机聚合物; 传递过程 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.06.020 |
| 分类号: TQ028.8 |
| 出版年,卷(期):页码: 2025,45(6):184-194 |
|
摘要: |
|
全球气候变化背景下,高效碳捕集技术成为应对气候危机的关键,其中膜分离技术因运行成本低和可模块化操作的特性展现出商业化潜力。多孔有机聚合物(POPs)凭借可调控的微/介孔网络、高比表面积、良好稳定性及结构可设计性,在气体分离领域备受关注。本文系统综述了多孔有机聚合物(包括超交联聚合物、共轭微孔聚合物、共价有机框架等)的合成策略与结构特性,重点探讨了其在CO2分离膜中的最新研究进展。未来研究需聚焦于精准孔道设计、界面相容性调控及规模化制备技术,以推动POPs在工业碳捕集中的实际应用。 |
|
In the context of global climate change, efficient carbon capture technologies have become key to address the climate crisis, among which membrane separation technologies have shown potential for commercialization due to their low operating costs and modular operation properties. Porous organic polymers (POPs) have attracted much attention in the field of gas separation due to their tunable micro/mesoporous network, high specific surface area, good stability and structural designability. In this paper, the synthesis strategies and structural properties of the main types of POPs (including hyper crosslinked polymers, conjugated microporous polymers, covalent organic frameworks, etc.) with a focus on their recent research progress in CO2 separation membranes were systematically reviewed. Future research needs to focus on precise pore design, interfacial compatibility modulation and scale-up preparation techniques to promote the practical application of POPs in industrial carbon capture. |
|
基金项目: |
| 山西省基础研究计划资助项目(202403021211017, 20210302123196); 佛山市促进高校科技成果服务产业发展扶持项目(2024XCL03, 2024XCL04) |
|
作者简介: |
| 牛宏霞(1998-),女,山西吕梁人,硕士研究生,研究方向为膜分离技术. |
|
参考文献: |
| [1]Ullah S, Bustam M A, Al-Sehemi A G, et al. Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study[J]. Micropor Mesopor Mat, 2020, 296: 110002. [2]Saqib S, Rafiq S, Muhammad N, et al. Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO2, CH4, and N2) separation[J]. J Nat Gas Sci Eng, 2020, 73: 103072. [3]Brescini M, Antomarioni S, Ciarapica F E, et al. Techno-economic and environmental assessment of carbon capture solutions in maritime transportation[J]. Ocean Eng, 2025,330: 121252. [4]Wang M, Rahimi M, Kumar A, et al. Flue gas CO2 capture via electrochemically mediated amine regeneration: system design and performance[J]. Appl Energy, 2019, 255: 113879. [5]Abd A A, Naji S Z, Hashim A S, et al. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review[J]. J Environ Chem Eng, 2020, 8(5): 104142. [6]Berstad D, Skaugen G, Roussanaly S, et al. CO2 capture from IGCC by low-temperature synthesis gas separation[J]. Energies, 2022, 15(2): 515. [7]Olabi A G, Alami A H, Ayoub M, et al. Membrane-based carbon capture: recent progress, challenges, and their role in achieving the sustainable development goals[J]. Chemosphere, 2023, 320: 137996. [8]Douna I, Farrukh S, Hussain A, et al. Experimental investigation of polysulfone modified cellulose acetate membrane for CO2/H2 gas separation[J]. Korean J Chem Eng, 2022, 39(1): 189-197. [9]Sreenath S, Sam A A. Hybrid membrane-cryogenic CO2 capture technologies: a mini-review[J]. Front Energy Res, 2023, 11: 1167024. [10]Rahman M F, Fujisawa I, Haraguchi N, et al. Synthesis of cinchona urea polymers using Yamamoto coupling and their application to asymmetric reaction[J]. Chirality, 2023, 35(3): 178-188. [11]Wang X G, Li J Y, Wang L Q, et al. Palladium/N-heterocyclic carbene-decorated covalent organic framework for Suzuki-Miyaura and Mizoroki-Heck cross-oupling[J]. J Org Chem, 2025, 90(19): 6532-6537. [12]Teng X H, Cheng Y Q, Xia Z Z, et al. Conjugated microporous polymer for solid-phase extraction of neonicotinoid insecticides from environmental water samples[J]. J Chromatogr A, 2024, 30: 1731. [13]Arun T R, Kumar H P, Kamalesu S. Exploring the utilization of Schiff base metal complexes in biological settings: a review[J]. Inorg Chem Commun, 2024, 170:113251. [14]Sharma V, Sahoo A, Sharma Y, et al. Synthesis of nanoporous hypercrosslinked polyaniline (HCPANI) for gas sorption and electrochemical supercapacitor applications[J]. Rsc Adv, 2015, 5(57): 45749-45754. [15]Raza S, Nazeer S, Abid A, et al. Recent research progress in the synthesis, characterization and applications of hyper cross-linked polymer[J]. J Polym Res, 2023,30:415. [16]Tan L X, Tan B. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chem Soc Rev, 2017, 46: 3322-3356. [17]Liu G L, Wang Y X, Shen C J, et al. A facile synthesis of microporous organic polymers for efficient gas storage and separation[J]. J Mater Chem A, 2015, 3(6): 3051-3058. [18]王玉冰, 陈杰, 延卫, 等. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854. [19]Ding X S, Han B H. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation[J]. Angew Chem Int Edit, 2015, 54(22): 6536-6539. [20]Budd P M, Msayib K J, Tattershall C E, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. J Membr Sci, 2005, 251(1/2): 263-269. [21]Swaidan R, Ghanem B S, Litwiller E, et al. Pure and mixed-gas CO2/CH2 separation properties of PIM-1 and an amidoxime-functionalized PIM-1[J]. J Membr Sci, 2014, 457: 95-102. [22]Tian Y Y, Zhu G S. Porous Aromatic Frameworks (PAFs)[J]. Chem Rev, 2020, 120(16): 8934-8986. [23]Zhang L, Sun J S, Sun F X, et al. Facile synthesis of ultrastable porous aromatic frameworks by suzuki-miyaura coupling reaction for adsorption removal of organic dyes[J]. Chem-Eur J, 2019, 25(15): 3903-3908. [24]Ben T, Ren H, Ma S Q, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew Chem Int Edit, 2009, 48(50): 9457-9460. [25]张信聪, 吴结宇, 彭莲莲, 等. 共价有机框架材料合成与应用研究进展[J]. 材料化学前沿, 2019, 7(3): 44-52. [26]Ding S Y, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction[J]. J Am Chem Soc, 2011, 133(49): 19816-19822. [27]Liu M Y, Guo L P, Jin S B, et al. Covalent triazine frameworks: synthesis and applications[J]. J Mater Chem A, 2019, 7(10): 5153-5172. [28]Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew Chem Int Edit, 2008, 47(18): 3450-3453. [29]Anbealagan L D, Ng T Y S, Chew T L, et al. Modified zeolite/polysulfone mixed matrix membrane for enhanced CO2/CH4 separation[J]. Membranes, 2021, 11(8):630. [30]Gunasakaran A, Jafa J, Saalah S, et al. Activated carbon and halloysite nanotubes membrane for CO2 and CH4 separation[J]. Mater Sci Eng, 2021, 1142:012012. [31]Zhang X R, Zhang T, Wang Y H, et al. Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation[J]. J Membr Sci, 2018, 560: 38-46. [32]Guo Z Y, Wu H, Chen Y, et al. Missing-linker defects in covalent organic framework membranes for efficient CO2 separation[J]. Angew Chem Int Edit, 2022, 61(41): 10466-10474. [33]Zeng S C, Liang X, Zhao M G, et al. Ultrathin PEI-functionalized carboxyl covalent organic framework membranes for efficient CO2/N2 separation[J]. J Membr Sci, 2024, 698: 122590. [34]Cao X C, Xu H Q, Dong S L, et al. Preparation of high-performance and pressure-resistant mixed matrix membranes for CO2/H2 separation by modifying COF surfaces with the groups or segments of the polymer matrix[J]. J Membr Sci, 2020, 601: 117882. [35]Liu Y T, Wu H, Wu S Q, et al. Multifunctional covalent organic framework (COF)-based mixed matrix membranes for enhanced CO2 separation[J]. J Membr Sci, 2021, 618: 118693. [36]Cheng Y D, Zhai L Z, Ying Y P, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. J Mater Chem A, 2019, 7(9): 4549-4560. [37]Dey S, Bügel S, Sorribas S, et al. Synthesis and characterization of covalent triazine framework CTF-1@polysulfone mixed matrix membranes and their gas separation studies[J]. Front Chem, 2019, 7: 693. [38]Bügel S, Hoang Q D, Spiess A, et al. Biphenyl-based covalent triazine framework/matrimid(r) mixed-matrix membranes for CO2/CH4 separation[J]. Membranes, 2021, 11(10): 795. [39]Mashhadikhan S, Sanaeepur H, Amooghin A E, et al. Synthesis of metal-doped covalent triazine frameworks: Incorporation into 6FDA-Durene polyimide for CO2 separation through mixed matrix membranes[J]. J Environ Chem Eng, 2024, 12(5): 113965. [40]Lindemann P, Tsotsalas M, Shishatskiy S, et al. Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation[J]. Chem Mater, 2014, 26(24): 7189-7193. [41]Yang Z Z, Guo W, Chen H, et al. Benchmark CO2 separation achieved by highly fluorinated nanoporous molecular sieve membranes from nonporous precursor via in situ cross-linking[J]. J Membr Sci, 2021, 638: 119698. [42]Song S Q, Li H, Li J D, et al. Enhancing interfacial compatibility of porous organic polymer-filled mixed-matrix membranes using covalent grafted PIM-1 network[J]. Sep Purif Technol, 2025, 354: 129442. [43]王晓楠, 倪飞, 李海壮, 等.构建界面兼容的Por-POF/PIM-1混合基质膜用于CO2/N2高效分离[J]. 膜科学与技术, 2024,44(4):170-177. [44]赵红永, 赵晨阳, 丁晓莉, 等.ZIF-8改性自具微孔聚合物膜的制备及其对CO2的分离性能[J]. 天津工业大学学报, 2024,43(4):1-6. [45]Zhang P P, Zhang C, Wang L, et al. Basic alkylamine functionalized PAF-1 hybrid membrane with high compatibility for superior CO2 separation from flue gas[J]. Adv Funct Mater, 2023, 33(4): 202210091. [46]Zhang S H, Li J L, Liu J, et al. Mixed monomer derived porous aromatic frameworks with superior membrane performance for CO2 capture[J]. J Membr Sci, 2021, 632: 119372. [47]Wang C H, Guo F Y, Li H, et al. Porous organic polymer as fillers for fabrication of defect-free PIM-1 based mixed matrix membranes with facilitating CO2-transfer chain[J]. J Membr Sci, 2018, 564: 115-122. [48]Lee Y, Chuah C Y, Lee J, et al. Effective functionalization of porous polymer fillers to enhance CO2/N2 separation performance of mixed-matrix membranes[J]. J Membr Sci, 2022, 647: 120309. [49]Yang Y Q, Chuah C Y, Nie L N, et al. Enhancing the mechanical strength and CO2/CH4 separation performance of polymeric membranes by incorporating amine-appended porous polymers[J]. J Membr Sci, 2019, 569: 149-156. [50]Wang W F, Yuan Y, Shi F, et al. Enhancing dispersibility of nanofiller via polymer-modification for preparation of mixed matrix membrane with high CO2 separation performance[J]. J Membr Sci, 2023, 683: 121791. [51]Yu G L, Li Y Q, Wang Z Y, et al. Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation[J]. J Membr Sci, 2019, 591: 117343. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号