自聚微孔聚合物气体分离膜材料研究进展
作者:李凯华1,朱芷杨2, 程博闻1, 李建新2,马小华2
单位: 1.天津工业大学 纺织科学与工程学院 省部共建分离膜与膜过程国家重点实验室,天津300387 2.天津工业大学 材料科学与工程学院 省部共建分离膜与膜过程国家重点实验室,天津300387
关键词: 自聚微孔聚合物;比表面积;气体分离膜;梯形聚合物;聚酰亚胺
出版年,卷(期):页码: 2020,40(5):118-128

摘要:
膜分离在现代化工、医疗、环境、能源等领域中都有非常重要的应用。聚合物膜材料是气体膜分离最核心的部分。自聚微孔聚合物是近年来出现的一种新型聚合物,由致孔基元以一定的桥接方式线性连接构成。由于不规则的致孔基元在聚集态时不能有效堆叠而使得聚合物内部含有大量固有微孔(孔径 < 2 nm)。同时,该聚合物兼具优良的热稳定性、机械强度和溶解性等特点,结合了有机膜材料优良的加工性和无机分子筛膜材料的高透过率、高选择性等优点,在选择性筛分气体以及液体分子领域有非常广泛的应用前景。本文综述了自聚微孔聚合物膜材料的分类、合成以及其膜材料的气体分离性质,并对该聚合物做了一定的展望。
Membrane-based gas separation had a variety of industrial applications such as chemical engineering, medical, environment, energy and so on. Polymer membrane is one of the most important parts in gas separation membranes. Recently, the emerging of polymer of intrinsic microporosity (PIM), a special polymer composed of “kinked” structure unit combined by some very rigid connectors. The site-of-contortions prevent the polymer main chain from close packing in the condensed phase that resulting in large volume of micropore (diameter < 2 nm). Besides, PIMs also demonstrate good mechanical strength, excellent solubility, thermal stabilities, etc., that are attracting great attention in both industrial and academic research. PIMs combined the advantages of easy processibility for polymer membranes and high permeability and selectivity of inorganic molecular sieve membranes, which demonstrated great potential in gas and liquid molecular separations. This review summarized the classification, synthesis and gas separation properties of intrinsically microporous polymers in gas field, and the perspective of this material.
 
李凯华(1991-),男,河北唐山人,博士,主要从事气体分离膜研究。E-mail:likh_199109@163.com;通讯作者,马小华,E-mail:xhuama@126.com;xhuama@tiangong.edu.cn程博闻,E-mail:bowen15@tjpu.edu.cn)

参考文献:
[1] Wang Y, Ma X, Ghanem BS, Alghunaimi F, et al. Polymers of intrinsic microporosity for energy- intensive membrane-based gas separations[J]. Mater Today Nano 2018, 3: 69-95.
[2] Robeson LM. The upper bound revisited[J]. J Membr Sci 2008, 320(1-2): 390-400.
[3] Budd PM, Ghanem BS, Makhseed S, et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials[J]. Chem Commun 2004(2): 230-231.
[4] Masuda T, Isobe E, Higashimura T, et al. Poly[1-(Trimethylsilyl)-1-Propyne] - a New High Polymer Synthesized with Transition-Metal Catalysts and Characterized by Extremely High Gas-Permeability[J]. J Am Chem Soc 1983, 105(25): 7473-7474.
[5] Ghanem BS, Swaidan R, Litwiller E, et al. Ultra-Microporous Triptycene-based Polyimide Membranes for High-Performance Gas Separation [J]. Adv Mater 2014, 26(22): 3688-3692.
[6] Pinnau I, Freeman B. D, Polymeric Materials for Gas Separations[M], ACS Symposium Series, American Chemical Society, Washington DC 1999.
[7] Nagai K, Masuda T, Nakagawa T, et al. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions[J]. Prog Polym Sci 2001, 26(5): 721-798.
[8] Hu Y, Shiotsuki M, Sanda F, et al. Synthesis and extremely high gas permeability of polyacetylenes containing polymethylated indan/tetrahydronaph- thaene moieties[J]. Chem Commun 2007(41): 4269-4270.
[9] He Y, Benedetti FM, Lin S, et al. Polymers with Side Chain Porosity for Ultrapermeable and Plasticization Resistant Materials for Gas Separations[J]. Adv Mater 2019: e1807871.
[10] Merkel TC, Bondar V, Nagai K, et al. Gas Sorption, Diffusion, and Permeation in Poly(2,2-bis (trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene)[J]. Macromolecules 1999, 32(25): 8427-8440.
[11] Yampolskii Y, Belov N, Alentiev A. Perfluorinated polymers as materials of membranes for gas and vapor separation[J]. J Membr Sci 2020, 598: 117779.
[12] Yin HJ, Chua YZ, Yang B, et al. First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1[J]. J Phys Chem Lett 2018, 9(8): 2003-2008.
[13] Budd PM, Msayib KJ, Tattershall CE, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. J Membr Sci 2005, 251(1-2): 263-269.
[14] Du N, Park HB, Dal-Cin MM, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energy Environ Sci 2012, 5(6): 7306-7322.
[15] Ma XH, Pinnau I. A novel intrinsically microporous ladder polymer and copolymers derived from 1,1 ', 2,2 '-tetrahydroxy- tetraphenyl- ethylene for membrane -based gas separation [J]. Polym Chem 2016, 7(6): 1244-1248.
[16] Short R, Carta M, Bezzu CG, et al. Hexaphenylbenzene-based polymers of intrinsic microporosity[J]. Chem Commun 2011, 47(24): 6822-6824.
[17] Zhang J, Kang H, Martin J, et al. The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon[J]. Chem Commun 2016. 52, 6553-6556
[18] Bezzu CG, Carta M, Tonkins A, et al. A Spirobifluorene-Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation[J]. Adv Mater 2012, 24(44): 5930-5933.
[19] Bezzu CG, Carta M, Ferrari M-C, et al. The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene -based polymers of intrinsic microporosity[J]. J Mater Chem A 2018, 6(22): 10507-10514..
[20] Rose I, Bezzu CG, Carta M, et al. Polymer ultrapermeability from the inefficient packing of 2D chains[J]. Nat Mater 2017, 16(9): 932-937.
[21] Comesaña-Gándara B, Chen J, Bezzu CG, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity[J]. Energy Environ Sci 2019, 12(9): 2733-2740.
[22] Carta M, Malpass-Evans R, Croad M, et al. An Efficient Polymer Molecular Sieve for Membrane Gas Separations[J]. Science 2013, 339(6117): 303-307.
[23] Carta M, Croad M, Malpass-Evans R, et al. Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Troger's Base Polymers[J]. Adv Mater 2014, 26(21): 3526-3531.
[24] Williams R, Burt LA, Esposito E, et al. A highly rigid and gas selective methanopent- acene-based polymer of intrinsic microporosity derived from Troger's base polymerization[J]. J Mater Chem A 2018, 6(14): 5661-5667.
[25] Rose I, Carta M, Malpass-Evans R, et al. Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity[J]. ACS Macro Lett 2015, 4(9): 912-915.
[26] Zhu Z, Zhu J, Li J, et al. Enhanced Gas Separation Properties of Tröger’s Base Polymer Membranes Derived from Pure Triptycene Diamine Regioisomers[J]. Macromolecules 2020, 53(5): 1573-1584.
[27] Ghanem BS, McKeown NB, Budd PM, et al. Polymers of Intrinsic Microporosity Derived from Bis(phenazyl) Monomers[J]. Macromolecules 2008, 41(5): 1640-1646.
[28] Ghanem BS, Swaidan R, Ma X, et al. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves[J]. Adv Mater 2014, 26(39): 6696-6700.
[29] Swaidan R, Ghanem B, Litwiller E, et al. Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid" Polymers of Intrinsic Microporosity[J]. Macromolecules 2015, 48(18): 6553-6561.
[30] Swaidan R, Ghanem B, Pinnau I. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations[J]. ACS Macro Lett 2015, 4(9): 947-951.
[31] Liu S, Jin ZX, Teo YC, et al. Efficient Synthesis of Rigid Ladder Polymers via Palladium Catalyzed Annulation[J]. J Am Chem Soc 2014, 136(50): 17434-17437.
[32] Lai HWH, Teo YC, Xia Y. Functionalized Rigid Ladder Polymers from Catalytic Arene-Norbornene Annulation Polymerization[J]. Acs Macro Lett 2017, 6(12): 1357-1361.
[33] Lai HWH, Benedetti FM, Jin Z, et al. Tuning the Molecular Weights, Chain Packing, and Gas-Transport Properties of CANAL Ladder Polymers by Short Alkyl Substitutions[J]. Macromolecules 2019, 52(16): 6294-6302.
[34] Olvera LI, Rodríguez-Molina M, Ruiz-Treviño FA, et al. A Highly Soluble, Fully Aromatic Fluorinated 3D Nanostructured Ladder Polymer[J]. Macromolecules 2017, 50(21): 8480-8486.
[35] Ma X, Yang S. Advanced Polyimide Materials, Synthesis, Characterization and Applications, Chapter 6, Polyimide Gas Separation Membranes [M]. 2018.
[36] Ghanem BS, McKeown NB, Budd PM, et al. High-performance membranes from polyimides with intrinsic microporosity[J]. Adv Mater 2008, 20(14): 2766-2771.
[37] Rogan Y, Starannikova L, Ryzhikh V, et al. Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity[J]. Polym Chem 2013, 4(13): 3813-3820.
[38] Rogan Y, Malpass-Evans R, Carta M, et al. A highly permeable polyimide with enhanced selectivity for membrane gas separations[J]. J Mater Chem A 2014, 2(14): 4874.
[39] Ma XH, Ghanem B, Salines O, et al. Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride[J]. Acs Macro Lett 2015, 4(2): 231-235.
[40] Ma XH, Pinnau I. Effect of Film Thickness and Physical Aging on "Intrinsic" Gas Permeation Properties of Microporous Ethanoanthracene -Based Polyimides[J]. Macromolecules 2018, 51(3): 1069-1076.
[41] Ma XH, Abdulhamid MA, Pinnau I. Design and Synthesis of Polyimides Based on Carbocyclic Pseudo-Troger's Base-Derived Dianhydrides for Membrane Gas Separation Applications[J]. Macromolecules 2017, 50(15): 5850-5857.
[42] Ghanem B, Alghunaimi F, Ma X, et al. Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3,3?-dimethylnaphthidine[J]. Polymer 2016, 101: 225-232.
[43] Weber J, Su O, Antonietti M, Thomas A. Exploring polymers of intrinsic microporosity- microporous, soluble polyamide and Polyimide[J]. Macromol Rapid Comm 2007, 28(18-19): 1871-1876.
[44] Cho YJ, Park HB. High Performance Polyimide with High Internal Free Volume Elements [J]. Macromol Rapid Comm 2011, 32(7): 579-586.
[45] Ghanem BS, Alghunaimi F, Wang Y, et al. Synthesis of Highly Gas-Permeable Polyimides of Intrinsic Microporosity Derived from 1,3,6,8- Tetramethyl- 2,7-diaminotriptycene[J]. ACS Omega 2018, 3(9): 11874-11882.
[46] Ma XH, Salinas O, Litwiller E, et al. Novel Spirobifluorene- and Dibromospirobifluorene -Based Polyimides of Intrinsic Microporosity for Gas Separation Applications[J]. Macromolecules 2013, 46(24): 9618-9624.
[47] Wang Z, Wang D, Zhang F, et al. Tröger’s Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation[J]. ACS Macro Lett 2014, 3(7): 597-601.
[48] Zhuang Y, Seong JG, Do YS, et al. Intrinsically Microporous Soluble Polyimides Incorporating Tröger’s Base for Membrane Gas Separation[J]. Macromolecules 2014, 47(10): 3254-3262.
[49] Ghanem B, Alaslai N, Miao XH, et al. Novel 6FDA-based polyimides derived from sterically hindered Troger's base diamines: Synthesis and gas permeation properties[J]. Polymer 2016, 96: 13-19.
[50] Lee M, Bezzu CG, Carta M, B et al. Enhancing the Gas Permeability of Tröger’s Base Derived Polyimides of Intrinsic Microporosity[J]. Macromolecules 2016, 49(11): 4147-4154.
[51] Abdulhamid MA, Lai HWH, Wang Y, et al. Microporous Polyimides from Ladder Diamines Synthesized by Facile Catalytic Arene–Norbornene Annulation as High-Performance Membranes for Gas Separation[J]. Chem Mater 2019, 31(5): 1767-1774.
[52] Abdulhamid MA, Ma X, Miao X, et al. Synthesis and characterization of a microporous 6FDA- polyimide made from a novel carbocyclic pseudo Tröger's base diamine: Effect of bicyclic bridge on gas transport properties[J]. Polymer 2017, 130: 182-190.
[53] Tsui NT, Paraskos AJ, Torun L, et al. Thomas EL. Minimization of internal molecular free volume: A mechanism for the simultaneous enhancement of polymer stiffness, strength, and ductility[J]. Macromolecules 2006, 39(9): 3350-3358.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号