乙酰乙酸纤维素膜的手性传输性质研究 |
作者:王涛1, 刘旭阳1, 刘冬青1, 尤蒙2, 孟建强1 |
单位: 1. 天津工业大学 省部共建分离膜与膜过程国家重点实验室, 材料科学与工程学院 2. 河南师范大学 化学化工学院 |
关键词: 手性分离; 乙酰乙酸纤维素膜; 酯交换反应; 手性传输性质;D,L色氨酸 |
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.010 |
分类号: TQ028 |
出版年,卷(期):页码: 2024,44(5):82-89 |
摘要: |
选用价格较低且易得的微晶纤维素作为实验原料,用酯交换法与乙酰乙酸叔丁酯反应,通过控制反应时间制备不同取代度的乙酰乙酸纤维素(CAA),并利用溶剂挥发法制得CAA膜.通过1H NMR、FTIR、SEM和TGA等测试CAA膜的化学结构、形貌和热稳定性. 使用渗析器测试CAA膜对D,L-色氨酸的渗透拆分性质,利用二元高压梯度高效液相色谱测试渗透液中D-色氨酸和L-色氨酸的浓度.针对手性传输性质,研究了不同取代度的CAA膜对D,L-色氨酸的拆分机理.研究发现,低取代度的CAA膜有更好的手性拆分性能,而高取代度的CAA膜由于接触水溶液后自由体积增大,色氨酸容易通过渗透过膜,分离性能降低.经过对CAA膜对D-色氨酸和L-色氨酸的渗透、分配和扩散系数的分析可知,高取代度的CAA膜的手性拆分性能主要是由扩散控制.其中低取代度(DS=0.57)的CAA膜的对映体过量百分比在6 h内保持100 %,超过6 h略微下降,之后趋于稳定.本研究通过简单的调控CAA的取代度制备了具有一定拆分性能的手性分离膜,为手性分离膜的设计提供了思路. |
In this study, the less expensive and readily available microcrystalline cellulose was chosen as the experimental raw material, and the reaction of tert-butyl acetoacetate with ester exchange method was used to prepare cellulose acetoacetate (CAA) with different degrees of substitution by controlling the reaction time, and the solvent evaporation method was used to obtain the CAA membrane. The chemical structure, morphology and thermal stability of CAA membranes were tested by 1H NMR, FTIR, SEM and TGA. The permeation splitting property of CAA membranes for D,L-tryptophan was tested using a dialyser, and the concentration of D-tryptophan and L-tryptophan in the permeate was tested using binary high-pressure gradient high-performance liquid chromatography (HPLC). The mechanism of D,L-tryptophan splitting by CAA membranes with different degree of substitution was investigated with respect to the chiral transport property. It was found that CAA membranes with low substitution degree had better chiral splitting performance, while CAA membranes with high substitution degree had lower separation performance due to the increase of free volume after contacting with aqueous solution, and the tryptophan could easily pass through the permeation periplasm. After analysing the permeation, partitioning and diffusion coefficients of D-tryptophan and L-tryptophan, it was concluded that the chiral splitting performance of CAA membranes with high substitution degree was mainly controlled by diffusion. The enantiomeric excess percentage of CAA membranes with low substitution degree (DS=0.57) remained 100% for 6 h, decreased slightly beyond 6 h, and then stabilised. In this study, chiral separation membranes with certain splitting performance were prepared by simply modulating the substitution degree of CAA, which provides ideas for the design of chiral separation membranes. |
基金项目: |
国家自然科学基金项目(22075206) |
作者简介: |
王涛(1998-),男,山东滨州人,硕士生,从事改性膜对手性分子分离性能的研究.*通讯作者,尤蒙,E-mail: youmeng125@163.com; 孟建强,E-mail:jianqiang.meng@hotmail.com |
参考文献: |
[1]Bégin J L, Jain A, Parks A, et al. Nonlinear helical dichroism in chiral and achiral molecules\[J\]. Nat Photonics, 2023, 17(1): 82-88. \[2\]Sanganyado E, Lu Z J, Fu Q G, et al. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes\[J\]. Water Res, 2017, 124: 527-542. \[3\]Abram M, Jakubiec M, Kaminski K. Chirality as an important factor for the development of new antiepileptic drugs\[J\]. Chem Med Chem, 2019, 14(20): 1744-1761. \[4\]Lenz C, Sherwood A, Kargbo R, et al. Taking different roads: LTryptophan as the origin of psilocybe natural products \[J\]. Chem Plus Chem, 2021, 86(1): 28-35. \[5\]Zeng L L, Peng X H, Peng L, et al. Green and efficient enantioseparation of amlodipine using a novel pairwise crystallizationcirculating extraction coupling method aimed at in situ reuse of mother liquor\[J\]. Sep Purif Technol, 2022, 299: 121774. \[6\]Wang S Z, Shi T T, Fang Z, et al. Enzymatic kinetic resolution in flow for chiral mandelic acids\[J\]. J Flow Chem, 2022, 12(2): 227-235. \[7\]Lyu S, Ma C B, Cong H L, et al. Synthesis of 3,5-dichlorobenzene isocyanatederived βcyclodextrin and 3,5-dimethyl phenyl isocyanatederived β-cyclodextrin chiral stationary phases and their applications in the separation of chiral compounds\[J\]. Sep Purif Technol, 2022, 294: 121147. \[8\]Liu T Q, Li Z, Wang J J, et al. Solid membranes for chiral separation: A review \[J\]. Chem Eng J, 2021, 410: 128247. \[9\]Cheng Q S, Ma Q, Pei H B, et al. Enantioseparation membranes: Research status, challenges, and trends\[J\]. Small, 2023, 19(20): 2300376. \[10\]Jiang Y D, Zhang J H, Xie S M, et al. Chiral separation of D,Ltyrosine through nitrocellulose membrane\[J\]. J Appl Polym Sci, 2012, 124(6): 5187-5193. \[11\]金雪宁. 多糖基手性复合材料用于氨基酸对映体的识别及分离\[D\].兰州:西北师范大学, 2023. \[12\]赵慧玲. 纤维素的手性分离特性研究\[D\].昆明:云南师范大学, 2016. \[13\]Yang W S, Mei Z K, Feng S, et al. Cellulose nanocrystal preparation via rapid hydrolysis of wood cellulose fibers using recyclable molten ferric chloride hexahydrate\[J\]. ACS Sustainable Chem Eng, 2023, 11(27): 10172-10182. \[14\]Yu C, Yin B H, Wang Y, et al. Advances in membranebased chiral separation\[J\]. Coord Chem Rev, 2023, 495: 215392. \[15\]Higuchi A, Tamai M, Ko Y A, et al. Polymeric membranes for chiral separation of pharmaceuticals and chemicals\[J\]. Polym Rev, 2010, 50(2): 113-143. \[16\]Xie R, Chu L Y, Deng J G. Membranes and membrane processes for chiral resolution\[J\]. Chem Soc Rev, 2008, 37(6): 1243-1263. \[17\]Ke J, Yang K, Bai X P, et al. A novel chiral polyester composite membrane: Preparation, enantioseparation of chiral drugs and molecular modeling evaluation\[J\]. Sep Purif Technol, 2021, 255: 17717. \[18\]Flores-López L Z, Caloca J, Rogel-Hernández E, et al. Development of an enantioselective membrane from cellulose acetate propionate/cellulose acetate, for the separation of trans-stilbene oxide\[J\]. Cellulose, 2014, 21(3): 1987-1995. \[19\]Keating J J, Bhattacharya S, Belfort G. Separation of D, L-amino acids using ligand exchange membranes\[J\]. J Membr Sci, 2018, 555: 30-37. \[20\]Zhang C C, Chen S, Hu L N, et al. Elevating the water/salt selectivity of polybenzimidazole to the empirical upper bound of desalting polymers by marrying Nsubstitution with chlorination\[J\]. Polymer, 2022, 261: 125419. \[21\]Hu L N, You M, Meng J Q. Chlorination as a simple but effective method to improve the water/salt selectivity of polybenzimidazole for desalination membrane applications\[J\]. J Membr Sci, 2021, 638: 119745. \[22\]Liu H C, Rong L D, Wang B J, et al. Facile synthesis of cellulose derivatives based on cellulose acetoacetate\[J\]. Carbohydr Polym, 2017, 170: 117-123. \[23\]Wan M J, Zheng Y C, Dai X M, et al. Click chemistry for the preparation of βcyclodextrin grafting uniform spherical covalent organic framework materials for chiral separation\[J\]. Chem Mater, 2023, 35(2): 609-616. \[24\]Qiu X, Chen W B, Chen Y T, et al. Separation of chiral drugs through dual chiral ionic liquid functionalized composite membrane and study on chiral recognition mechanism\[J\]. J Membr Sci, 2023, 687:122087. \[25\]Higuchi A, Tamai M, Ko Y A, et al. Polymeric membranes for chiral separation of pharmaceuticals and chemicals\[J\]. Polym Rev, 2010, 50(2): 113-143. \[26\]谢禹杰,藏雨,王建军,等. 含薄荷酯的手性共轭微孔聚合物混合基质膜的制备及其对映体拆分性能\[J\]. 膜科学与技术, 2022, 42(2): 78-88. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号