气体分离膜材料从空气中分离氙气性能研究 |
作者:陈占营1, 刘蜀疆1, 常印忠1, 盛毓强1, 王建龙2, 黑东炜3 |
单位: 1. 禁核试北京国家数据中心和北京放射性核素实验室, 北京 100085; 2. 清华大学 核能与新能源技术研究院, 北京 100084; 3. 西北核技术研究所, 西安 710024 |
关键词: 气体分离膜; 放射性氙; 渗透性能; 分离性能 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.015 |
分类号: O484.3 |
出版年,卷(期):页码: 2025,45(1):137-145 |
摘要: |
大气放射性氙监测对于核试验检测具有重要意义.以从空气中分离浓缩氙为应用背景,实验测试了N2、O2、CO2和Xe 4种气体在不同类别膜材料中的渗透性,评价了不同膜材料对4种气体之间的分离性能;考察了温度、压力等操作条件变化对氙气分离性能的影响.结果表明,在聚酰亚胺(PI)、聚苯醚(PPO)和聚砜(PSf)3类材料中,PI具有明显优于其他两类材料的氙气分离性能;温度和压力变化对氙气分离性能的影响均不明显.上述研究工作对于气体分离膜从空气中分离氙气的实际应用具有重要意义. |
Atmospheric radioxenon monitoring is of great significance for nuclear test ban verification. Taking the separation and concentration of xenon from air as the application background, this paper tested the permeabilities of N2, O2, CO2 and Xe in various membrane materials, and the separation performances for the gases were compared. The effects of temperature and pressure on the gases permeation and separation were investigated. The results show that among the three types of materials, namely polyimide (PI), polyphenylene ether (PPO) and polysulfone (PSf), PI has a significantly better xenon separation performance than the other two types of materials; the influences of temperature and pressure changes on the xenon separation performance are both not obvious. The above research work is of great significance for the practical application of gas separation membranes in separating xenon from air. |
基金项目: |
国家自然科学基金项目(1220051626) |
作者简介: |
陈占营(1977-),男,河南确山人,研究员,博士,研究方向为禁核试放射性核素核查技术. |
参考文献: |
[1]Perkins R W, Casey L A. Radioxenons: Their role in monitoring a comprehensive test ban treaty[R]. Pacific Northwest National Lab. (PNNL), Richland, WA (United States), 1996. [2]Bowyer T W, Schlosser C, Abel K H, et al. Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system[J]. J Environ Radioact, 2002, 59:139-151. [3]Ringbom A, Axelsson A, Aldener M, et al. Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013[J]. J Environ Radioact, 2014, 128: 47-63. [4]周崇阳. 大气样品中氙的富集分离及其在核查技术中的应用研究[D].北京: 清华大学, 2011. [5]陈占营. 大气中氙膜分离富集及监测技术[D]. 北京: 清华大学, 2017. [6]陈占营, 黑东炜, 王建龙. CTBT大气放射性氙监测技术进展[J]. 现代应用物理, 2018(9): 12-22. [7]Kunz C. Xe-133: ambient air concentrations in upstate New York[J]. Atmos Environ, 1989, 23(8): 1827-1833. [8]Ehhalt D, Münnich K O, Roether W, et al. Artificially produced radioactive noble gases in the atmosphere[J]. J Geophys Res, 1963, 68(13): 3817-3821. [9]Auer M, Axelsson A, Blanchard X. et al. Intercomparison experiments of systems for the measurement of xenon radionuclides in the atmosphere[J]. Appl Radiat Isot, 2004,60(6): 863-877. [10]Zou X, Zhu G.Microporous organic materials for membrane-based gas separation[J]. Adv Mater, 2018, 30(3):1700750. [11]Guining C, Guozhen L, Nanping W X.Zeolites and metal-organic frameworks for gas separation: The possibility of translating adsorbents into membranes[J].Chem Soc Rev, 2023, 52(14):4586-4602. [12]Liu Q, Wang T, Liang C ,et al.Zeolite married to carbon: A new family of membrane materials with excellent gas separation performance[J].Chem Mater, 2006, 18(26):6283-6288. [13]Robb W L. Thin silicone membranes and their permselective properties and some applications[R]. General Electric Company, 1965: 65-031. [14]Robb W L. Permeable polymeric membrane gas separation[P]. US Pat: 3274750, 1966. [15]Ohno M, Morisue T, Ozaki O, et al. Separation of rare gases by membranes[J]. Radiochem Radioanal Lett, 1976, 27(5/6): 299-306. [16]Jensvold J A, Thomas O J. Membrane for separation of xenon from oxygen and nitrogen and method of using Same[P]. US Pat: 6168649-B, 2001. [17]Lagorsse S, Magalhaes F D, Mendes A. Xenon recycling in an anaesthetic closed-system using carbon molecular sieve membranes[J]. J Membr Sci, 2007, 301(1/2): 29-38. [18]Schmidt K. Retention of noble gases in the exhaled air of ventilated patients by membrane separation[P].US Pat: 20100031961, 2010. [19]Chen Z Y, Chang Y Z, Liu S J, et al. Determination of xenon in air by a pulse-discharge helium ionization detector[J]. Chem Res Chin Univ, 2012, 28(5):814-817. [20]陈占营, 刘蜀疆, 王建龙, 等. 直接进样气相色谱质谱法分析大气中的氪和氙[J]. 分析化学, 2016, 44(3): 468-473. [21]张海涛, 陈占营, 张利兴, 等. 气相色谱法测定大气中氪和氙[J]. 理化检验(化学分册), 2010, 46(7): 717-719. [22]Fontaine J P, Pointurier F, Blanchard X, et al. Atmospheric xenon radioactive isotope monitoring[J]. J Environ Radioact, 2004, 72(1/2): 129-135. [23]Le Petit G, Armand P, Brachet G, et al. Contribution to the development of atmospheric radioxenon monitoring[J]. J Radioanal Nucl Chem, 2008, 276(2): 391-398. [24]Deng J Y, Zhang H T, Wang Y L, et al. Adsorption properties of activated carbon fiber-adsorption law to CO2, N2, O2 and Xe[J]. Chin J Mater Res, 2001, 15(3): 303-307. [25]Lloyd M H. Adsorption of krypton and xenon by various materials[M]//Oak Ridge National Laboratory, 1961. [26]Sasaki S H, Tega E, Shimada A. Basic characteristics of hollow 2010,filament polyimide membrane in gas separation and application to tritium monitors[J]. J Radioanal Nucl Chem, 2003, 255(1):91-95. [27]徐仁贤. 气体分离膜应用的现状和未来[J]. 膜科学与技术, 2003, 23(4): 124-129. [28]李思琪,赵丹,李晖,等. 聚酰亚胺膜在稀有气体分离中的性能研究[J]. 膜科学与技术, 2023, 43(4): 90-98. [29]任建新. 膜分离技术及其应用[M]//北京: 化学工业出版社, 2002. [30]Wijmans J G, Baker R W. The solution-diffusion model: A review[J]. J Membr Sci, 1995, 107(1/2): 1-21. [31]Ho W, Sirkar K. Membrane handbook[M]//Springer Science & Business Media, 2012. [32]Mulder M. Basic principles of membrane technology[M]//Springer Science & Business Media, 1996. [33]Koros W J, Fleming G. Membrane-based gas separation[J]. J Membr Sci, 1993, 83(1): 1-80. [34]Baker R W. Future directions of membrane gas separation technology[J]. Ind Eng Chem Res, 2002, 41(6): 1393-1411. [35]Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review/state of the art[J]. Ind Eng Chem Res, 2009, 48(10): 4638-4663. [36]Khulbe K C, Feng C, Matsuura T. Synthetic polymeric membranes: characterization by atomic force microscopy[M]//Springer Science & Business Media, 2007. [37]Lloyd D R. Materials science of synthetic membranes[M]//ACS Publications, 1985. [38]王雪松. 气体膜技术[M]//北京: 化学工业出版社, 2010. [39]Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J Membr Sci, 1991, 62(2): 165-185. [40]Ekiner O, Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation 2010,spinning and properties[J]. J Membr Sci, 1990, 53(3): 259-273. [41]Kim T, Koros W, Husk G, et al. Relationship between gas separation properties and chemical structure in a series of aromatic polyimides[J]. J Membr Sci, 1988, 37(1): 45-62. [42]张译霖. 中空纤维膜技术及其应用分析[J]. 化纤与纺织技术, 2022, 51(9): 61-63. [43]刘玉花, 尹中升, 愈锋, 等. 中空纤维膜丝的小样评测方法[P]. 中国:CN 201110417689.4, 2015-07-22. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号