压力驱动膜过程的颗粒污染机理与CFD模拟进展
作者:钱涛1, 鲁丹12, 张雅琴13, 姚之侃12, 周志军1, 郑丹军1, 张林12
单位: 1. 浙江大学 化学工程与生物工程学院, 膜与水处理教育部工程中心, 杭州 310027; 2. 浙江大学 长三角智慧绿洲创新中心 未来环境实验室, 嘉兴 314000; 3. 浙江浙能技术研究院有限公司, 杭州 310027
关键词: 膜分离; 颗粒污染; 模型; 计算流体力学
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.018
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(6):158-168

摘要:
在压力驱动膜分离过程中,膜污染是影响膜分离性能和使用寿命的关键因素之一.解析污染物在膜表面的形成机理,对高性能抗污染膜研制和提高系统运行稳定性具有重要意义.本文综述了国内外关于压力驱动膜表面污染形成机制、机理模型和计算流体力学模拟的研究进展;重点介绍了颗粒污染的形成机理和影响因素,梳理了用于解释颗粒污染形成的数学模型;总结了计算流体力学在颗粒污染模拟中的应用,为面向压力驱动膜污染的理论计算和仿真模拟提供参考.
 
In pressure-driven membrane separation processes, membrane fouling is one of the key factors  affecting the performance and lifetime of the membrane. Analyzing the formation mechanism of pollutants on the membrane surface is of great significance for the development of high-performance anti-fouling membranes and for improving the stability of system operation. This article reviews the research progress in the formation mechanism of surface fouling of pressure-driven membranes, mechanistic models, and computational fluid dynamics simulations at home and abroad. It focuses on introducing the formation mechanism and influencing factors of particulate fouling and reviews the mathematical models used to explain the formation of particulate fouling. Finally, it summarizes the application of computational fluid dynamics in the simulation of particulate fouling, which provides a reference for theoretical calculation, and simulation modeling of pressure-driven membrane fouling. 
 

基金项目:
浙江省“尖兵计划”项目(2022C01031); 中央高校基本科研业务费专项资金(226-2024-00060); 国家自然科学基金项目(22138010,22108241); 中国博士后科学基金项目(2023M742997)

作者简介:
钱涛(1999-),男,浙江宁波人,硕士研究生,研究方向为纳滤膜颗粒污染机理研究

参考文献:
[1]郑根江. 中国膜产业发展状况与展望[J]. 水处理技术, 2020, 46(6): 1-3.
[2]Singh S K, Maiti A, Pandey A, et al. Fouling limitations of osmotic pressure-driven processes and its remedial strategies: A review[J]. J Appl Polym Sci, 2023, 140(2): e53295.
[3]Jafari M, Vanoppen M, Agtmaal J M C V, et al. Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands[J]. Desalination, 2021, 500: 114865.
[4]Das S, O’Connell M G, Xu H, et al. Assessing advances in anti-fouling membranes to improve process economics and sustainability of water treatment[J]. ACS ES&T Eng, 2022, 2(11): 2159-2173.
[5]Chew J W, Kilduff J, Belfort G. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update[J]. J Membr Sci, 2020, 601: 117865.
[6]Liu L, Wang Y, Liu Y, et al. Insight into key interactions between diverse factors and membrane fouling mitigation in anaerobic membrane bioreactor[J]. Environ Pollut, 2024, 347: 123750.
[7]秦兰兰, 黄海鸥. 多孔膜过滤的颗粒输移模型研究现状及展望[J]. 环境工程, 2021, 39(7): 54-61,93.
[8]张雅琴, 张林, 侯立安. 计算流体力学在水处理膜过程中的应用[J]. 中国工程科学, 2014, 16(7): 47-52.
[9]Lohaus J, Perez Y M, Wessling M. What are the microscopic events of colloidal membrane fouling?[J]. J Membr Sci, 2018, 553: 90-98.
[10]Lu Q, Wang J, Wang Z, et al. Molecular Insights into the interaction mechanism underlying the aggregation of humic acid and its adsorption on clay minerals[J]. Environ  Sci Technol, 2023, 57(24): 9032-9042.
[11]Liu J, Huang T, Ji R, et al. Stochastic collision-attachment-based monte carlo simulation of colloidal fouling: Transition from foulant-clean-membrane interaction to foulant-fouled-membrane interaction[J]. Environ  Sci  Technol, 2020, 54(19): 12703-12712.
[12]Wang L, Miao R, Wang X, et al. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: Characterization from microforces[J]. Environ  Sci  Technol, 2013, 47(8): 3708-3714.
[13]Tang C Y, Kwon Y N, Leckie J O. The role of foulant-foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling-Theoretical basis, experimental evidence, and AFM interaction force measurement[J]. J Membr  Sci, 2009, 326(2): 526-532.
[14]Henry C, Minier J P, Lefèvre G. Towards a description of particulate fouling: From single particle deposition to clogging[J]. Adv  Colloid Interface Sci, 2012, 185/186: 34-76.
[15]Nagata N, Herouvis K J, Dziewulski D M, et al. Cross-flow membrane microfiltration of a bacteriol fermentation broth[J]. Biotechnol  Bioeng, 1989, 34(4): 447-466.
[16]Tang C Y, Chong T H, Fane A G. Colloidal interactions and fouling of NF and RO membranes: A review[J]. Adv  Colloid Interface Sci, 2011, 164(1): 126-143.
[17]Dickhout J M, Moreno J, Biesheuvel P M, et al. Produced water treatment by membranes: A review from a colloidal perspective[J]. J  Colloid Interface Sci, 2017, 487: 523-534.
[18]Zamani A, Maini B. Flow of dispersed particles through porous media - Deep bed filtration[J]. J  Pet Sci  Eng, 2009, 1/2(69): 71-88.
[19]Gopalakrishnan A, Bouby M, Schfer A I. Membrane-organic solute interactions in asymmetric flow field flow fractionation: Interplay of hydrodynamic and electrostatic forces[J]. Sci  Total Environ, 2023, 855: 158891.
[20]Schron K, van Dinther A, Stockmann R. Particle migration in laminar shear fields: A new basis for large scale separation technology?[J]. Sep  Purif  Technol, 2017, 174: 372-388.
[21]Fu W, Hua L, Zhang W. Experimental and modeling assessment of the roles of hydrophobicity and zeta potential in chemically modified poly(ether sulfone) membrane fouling kinetics[J]. Ind  Eng  Chem Res, 2017, 56(30): 8580-8589.
[22]Brant J A, Childress A E. Assessing short-range membrane-colloid interactions using surface energetics[J]. J  Membr  Sci, 2002, 203(1): 257-273.
[23]Chen J, Mei R, Shen L, et al. Quantitative assessment of interfacial interactions with rough membrane surface and its implications for membrane selection and fabrication in a MBR[J]. Bioresour  Technol, 2015, 179: 367-372.
[24]Hoek E M V, Agarwal G K. Extended DLVO interactions between spherical particles and rough surfaces[J]. J  Colloid Interface Sci, 2006, 298(1): 50-58.
[25]Hoek E M V, Bhattacharjee S, Elimelech M. Effect of membrane surface roughness on colloid-membrane DLVO interactions[J]. Langmuir, 2003, 19(11): 4836-4847.
[26]Zhao L, Zhang M, He Y, et al. A new method for modeling rough membrane surface and calculation of interfacial interactions[J]. Bioresour Technol, 2016, 200: 451-457.
[27]Teng J, Deng Y, Zhou X, et al. A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process[J]. Front  Environ  Sci Eng, 2023, 17(10): 129.
[28]Mahlangu T O, Thwala J M, Mamba B B, et al. Factors governing combined fouling by organic and colloidal foulants in cross-flow nanofiltration[J]. J  Membr  Sci, 2015, 491: 53-62.
[29]Zhu R, Diaz A J, Shen Y, et al. Mechanism of humic acid fouling in a photocatalytic membrane system[J]. J  Membr  Sci, 2018, 563: 531-540.
[30]Xiao F, Xiao P, Zhang W J, et al. Identification of key factors affecting the organic fouling on low-pressure ultrafiltration membranes[J]. J  Membr  Sci, 2013, 447: 144-152.
[31]Bhattacharjee S, Kim A S, Elimelech M. Concentration polarization of interacting solute particles in cross-flow membrane filtration[J]. J  Colloid Interface Sci, 1999, 212(1): 81-99.
[32]Chen J C, Li Q, Elimelech M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration[J]. Adv  Colloid Interface Sci, 2004, 107(2): 83-108.
[33]Chen V, Fane A G, Madaeni S, et al. Particle deposition during membrane filtration of colloids: Transition between concentration polarization and cake formation[J]. J  Membr. Sci, 1997, 125(1): 109-122.
[34]Bacchin P, Si-Hassen D, Starov V, et al. A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions[J]. Chem  Eng  Sci, 2002, 57(1): 77-91.
[35]Bacchin P, Aimar P. Critical fouling conditions induced by colloidal surface interaction: From causes to consequences[J]. Desalination, 2005, 175(1): 21-27.
[36]Azas A, Mendret J, Petit E, et al. Evidence of solute-solute interactions and cake enhanced concentration polarization during removal of pharmaceuticals from urban wastewater by nanofiltration[J]. Water Res, 2016, 104: 156-167.
[37]Chong T H, Fane A G. Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: Modeling approach[J]. Desalin  Water Treat, 2009, 8(1/2/3): 68-90.
[38]Guo W, Ngo H H, Li J. A mini-review on membrane fouling[J]. Bioresour  Technol, 2012, 122: 27-34.
[39]Zhao D, Song J, Xu J, et al. Behaviours and mechanisms of nanofiltration membrane fouling by anionic polyacrylamide with different molecular weights in brackish wastewater desalination[J]. Desalination, 2019, 468: 114058.
[40]Mo Y, Xiao K, Liang P, et al. Effect of nanofiltration membrane surface fouling on organic micro-pollutants rejection: The roles of aqueous transport and solid transport[J]. Desalination, 2015, 367: 103-111.
[41]Wang Y N, Tang C Y. Nanofiltration membrane fouling by oppositely charged macromolecules: Investigation on flux behavior, foulant mass deposition, and solute rejection[J]. Environ Sci Technol, 2011, 45(20): 8941-8947.
[42]Yao W, Hou L, Wang F, et al. Dual-objective for the mechanism of membrane fouling in the early stage of filtration and determination of cleaning frequency: A novel combined model[J]. J Membr Sci, 2022, 647: 120315.
[43]Zhang C, Bao Q, Chen Q, et al. Membrane fouling behaviors and evolution during food waste digestate treatment[J]. J Membr Sci, 2022, 660: 120883.
[44]Hou L, Wang Z, Song P. A precise combined complete blocking and cake filtration model for describing the flux variation in membrane filtration process with BSA solution[J]. J  Membr Sci, 2017, 542: 186-194.
[45]Bolton G, LaCasse D, Kuriyel R. Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids[J]. J Membr Sci, 2006, 277(1): 75-84.
[46]Hamedi H, Mohammadzadeh O, Rasouli S, et al. A critical review of biomass kinetics and membrane filtration models for membrane bioreactor systems[J]. J  Environ  Chem  Eng, 2021, 9(6): 106406.
[47]Iritani E, Katagiri N. Developments of blocking filtration model in membrane filtration[J]. KONA Powder Part J, 2016, 33: 179-202.
[48]Gekas V, Aimar P, Lafaille J P, et al. A simulation study of the adsorption-Concentration polarisation interplay in protein ultrafiltration[J]. Chem  Eng  Sci, 1993, 48(15): 2753-2765.
[49]Ruiz-Beviá F, Gomis-Yagües V, Fernández-Sempere J, et al. An improved model with time-dependent adsorption for simulating protein ultrafiltration[J]. Chem Eng Sci, 1997, 52(14): 2343-2352.
[50]Schausberger P, Norazman N, Li H, et al. Simulation of protein ultrafiltration using CFD: Comparison of concentration polarisation and fouling effects with filtration and protein adsorption experiments[J]. J  Membr  Sci, 2009, 337(1): 1-8.
[51]Mondal S, Mukherjee R, Chatterjee S, et al. Adsorption-concentration polarization model for ultrafiltration in mixed matrix membrane[J]. AIChE J, 2014, 60(6): 2354-2364.
[52]Zhang J, Cai Z, Cong W, et al. Mechanisms of protein fouling in microfiltration. Ii. Adsorption and deposition of proteins on microfiltration membranes[J]. Sep  Sci  Technol, 2002, 37(13): 3039-3051.
[53]Xiao K, Wang X, Huang X, et al. Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration[J]. J Membr Sci, 2011, 373(1): 140-151.
[54]Muca R, Pitkowski W, Antos D. A shortcut method for evaluation of protein deposition onto the membrane surface in crossflow ultrafiltration[J]. Eng  Life Sci, 2017, 17(4): 370-381.
[55]Knutsen J S, Davis R H. Deposition of foulant particles during tangential flow filtration[J]. J Membr Sci, 2006, 271(1): 101-113.
[56]Le Clech P, Jefferson B, Chang I S, et al. Critical flux determination by the flux-step method in a submerged membrane bioreactor[J]. J Membr Sci, 2003, 227(1): 81-93.
[57]Field R W, Wu J J. Modelling of permeability loss in membrane filtration: Re-examination of fundamental fouling equations and their link to critical flux[J]. Desalination, 2011, 283: 68-74.
[58]Schwinge J, Neal P R, Wiley D E, et al. Estimation of foulant deposition across the leaf of a spiral-wound module[J]. Desalination, 2002, 146(1): 203-208.
[59]Su X, Li W, Palazzolo A, et al. Permeate flux increase by colloidal fouling control in a vibration enhanced reverse osmosis membrane desalination system[J]. Desalination, 2019, 453: 22-36.
[60]Chong T H, Wong F S, Fane A G. Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: Experimental observations[J]. J Membr Sci, 2008, 314(1): 101-111.
[61]Uppu A, Chaudhuri A, Prasad Das S. Numerical modeling of particulate fouling and cake-enhanced concentration polarization in roto-dynamic reverse osmosis filtration systems[J]. Desalination, 2019, 468: 114053.
[62]Liu J, Wang Z, Tang C Y, et al. Modeling dynamics of colloidal fouling of RO/NF membranes with a novel collision-attachment approach[J]. Environ  Sci  Technol, 2018, 52(3): 1471-1478.
[63]Liu J, Zhao Y, Fan Y, et al. Dissect the role of particle size through collision-attachment simulations for colloidal fouling of RO/NF membranes[J]. J  Membr  Sci, 2021, 638: 119679.
[64]Liu J, Chen K, Zou K, et al. Insights into the roles of membrane pore size and feed foulant concentration in ultrafiltration membrane fouling based on collision-attachment theory[J]. Water Environ  Res, 2021, 93(4): 516-523.
[65]Liu J, Fan Y, Sun Y, et al. Modelling the critical roles of zeta potential and contact angle on colloidal fouling with a coupled XDLVO-collision attachment approach[J]. J Membr Sci, 2021, 623: 119048.
[66]Jiang S, Xiao S, Chu H, et al. Intelligent mitigation of fouling by means of membrane vibration for algae separation: Dynamics model, comprehensive evaluation, and critical vibration frequency[J]. Water Res, 2020, 182: 115972.
[67]Jiang S, Xiao S, Chu H, et al. Performance enhancement and fouling alleviation by controlling transmembrane pressure in a vibration membrane system for algae separation[J]. J  Membr Sci, 2022, 647: 120252.
[68]Bowen W R, Jenner F. Theoretical descriptions of membrane filtration of colloids and fine particles: An assessment and review[J]. Adv  Colloid Interface Sci, 1995, 56: 141-200.
[69]Zheng X, Shan B, Chen L, et al. Attachment-detachment dynamics of suspended particle in porous media: Experiment and modeling[J]. J  Hydrol, 2014, 511: 199-204.
[70]Cao H, Habimana O, Semio A J C, et al. Understanding particle deposition kinetics on NF membranes: A focus on micro-beads and membrane interactions at different environmental conditions[J]. J  Membr  Sci, 2015, 475: 367-375.
[71]宋卫臣. 高分子超/纳滤膜分离过程的数值模拟[D].济南: 山东大学, 2013.
[72]崔海航, 刘珺芳. 基于污染物临界粘附力的超滤动态过程的CFD模拟[J]. 环境科学学报, 2016, 36(10): 3636-3642.
[73]崔海航, 胡晓晶, 刘珺芳. 基于移动网格的超滤膜污染物截留过程的动态数值模拟[J]. 膜科学与技术, 2015, 35(6): 59-66.
[74]Faridirad F, Zourmand Z, Kasiri N, et al. Modeling of suspension fouling in nanofiltration[J]. Desalination, 2014, 346: 80-90.
[75]Jianxin L, Zhijun L, Xiaofei X, et al. Numerical investigation of the membrane fouling during microfiltration of semiconductor wastewater[J]. Desalin  Water Treat, 2016, 57(11): 4756-4768.
[76]Sutariya B, Sargaonkar A, Raval H. Methods of visualizing hydrodynamics and fouling in membrane filtration systems: Recent trends[J]. Sep  Sci Technol, 2023, 58(1): 101-130.
参考文献[77]~[81]省略,有需要的读者请与作者联系
——本刊编辑部
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号