高性能抗污染PVDF复合膜及其油-水乳液分离性能研究
作者:汪家伟12, 朱岳12, 丁雅杰2, 王建强23, 刘富23
单位: 1.宁波大学 材料科学与化学工程学院, 宁波 315211; 2.中国科学院 宁波材料技术与工程研究所, 宁波 315201; 3.中国科学院大学 宁波材料工程学院, 宁波 315201
关键词: PVDF复合膜; 油-水分离; 抗污染; 界面聚合; 蒸汽诱导相分离; 亲水改性
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.011
分类号: TQ028.4
出版年,卷(期):页码: 2025,45(3):107-117

摘要:
本研究针对乳化含油废水处理中膜污染问题,创新性地开发了具有协同抗污结构的PVDF复合膜。通过蒸汽诱导相分离(VIPS)技术制备PVDF基膜,结合聚乙烯基吡咯烷酮聚乙烯基三乙氧基硅烷(PVP-VTES)共聚物亲水改性与逐步界面聚合工艺,在膜表面形成“PVP层-聚酰胺(PA)层”双效抗污层。实验数据显示,改性膜在13 h连续运行中保持油相回收率>60%(纯度99.9%),水相回收率近100%(纯度>98%)。机理分析表明,PVP层与PA层的协同效应促进油滴在膜表面的聚结脱附,有效延缓膜污染进程。该技术为乳化含油废水处理与资源回收提供了新型解决方案。
 
This study addresses the issue of membrane fouling in the treatment of emulsified oily wastewater by innovatively developing a PVDF composite membrane with a synergistic anti-fouling structure. The PVDF substrate membrane was prepared using the vapor-induced phase separation (VIPS) technique, followed by hydrophilic modification with a polyvinylpyrrolidone-polyvinyltriethoxysilane (PVP-VTES) copolymer and a stepwise interfacial polymerization process to form a dual-function anti-fouling layer consisting of a “hydration layer-polyamide” structure on the membrane surface. Experimental data showed that the modified membrane maintained an oil recovery rate of over 60% (purity~99.9%) and a water recovery rate close to 100% (purity>98%) during 13 hours of continuous operation. Mechanistic analysis revealed that the synergistic effect of the polyamide (PA) layer and the hydration layer facilitated the coalescence and detachment of oil droplets from the membrane surface, effectively mitigating membrane fouling. This technology provides a novel solution for emulsified oily wastewater treatment and resource recovery. 
 

基金项目:
国家自然科学基金面上项目(52373111)

作者简介:
汪家伟(2001-),男,安徽合肥人,硕士研究生,主要从事油水分离膜制备及其性能研究

参考文献:
[1]Lewis D, Sauzier J. Cleaning up after Mauritius oil spill[J]. Nature, 2020, 585(7824): 172-172.
[2]杨思民, 王建强, 刘富. 油水分离膜研究进展[J]. 膜科学与技术, 2019, 39(3): 132-141.
[3]Finucci B, Pacoureau N, Rigby C L, et al. Fishing for oil and meat drives irreversible defaunation of deepwater sharks and rays[J]. Science, 2024, 383(6687): 1135-1141.
[4]Yarahmadi H. Oil pollution threatens Persian Gulf marine life[J]. Science, 2024, 383(6683): 599-599.
[5]Zhang J, Liu L, Si Y, et al. Electrospun nanofibrous membranes: An effective arsenal for the purification of emulsified oily wastewater[J]. Adv Funct Mater, 2020, 30(25): 2002192.
[6]Tanudjaja H J, Hejase C A, Tarabara V V, et al. Membrane-based separation for oily wastewater: A practical perspective[J]. Water Res, 2019, 156: 347-365.
[7]Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. J Mater Chem A, 2017, 5(31): 16025-16058.
[8]Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment[J]. Adv Colloid Interface Sci, 2024, 323: 103073.
[9]Ge Q, Liu Y, Liu P, et al. Research on a harmless treatment method for oily sludge in coal chemical wastewater and the pollutant transformation mechanism of oily sludge during the treatment process[J]. J Hazard Mater, 2024, 478: 135568.
[10]Ran J, Liu J, Zhang C, et al. Experimental investigation and modeling of flotation column for treatment of oily wastewater[J]. Int J Min Sci Technol, 2013, 23(5): 665-668.
[11]Li H, Zhang J, Gan S, et al. Bioinspired dynamic antifouling of oil-water separation membrane by bubble-mediated shape morphing[J]. Adv Funct Mater, 2023, 33(26): 2212582.
[12]Cheng X, Ye Y, Li Z, et al. Constructing environmental-friendly “oil-diode” Janus membrane for oil/water separation[J]. ACS Nano, 2022, 16(3): 4684-4692.
[13]Yang C, Long M, Ding C, et al. Antifouling graphene oxide membranes for oil-water separation via hydrophobic chain engineering[J]. Nat Commun, 2022, 13(1): 7334.
[14]Zhang J, Peng K, Xu Z K, et al. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes[J]. Adv Colloid Interface Sci, 2023, 319: 102971.
[15]Deng Y, Wu Y, Chen G, et al. Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation[J]. Chem Eng J, 2021, 405: 127004.
[16]Oh S, Bang J, Jin H J, et al. Green fabrication of underwater superoleophobic biopolymeric nanofibrous membranes for effective oil-water separation[J]. Adv Fiber Mater, 2023, 5(2): 603-616.
[17]Cheng X, Li T, Yan L, et al. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation[J]. Sci Adv, 2023, 9(34): 8195.
[18]Zhang X, Zhao J, Ma L, et al. Biomimetic preparation of a polycaprolactone membrane with a hierarchical structure as a highly efficient oil-water separator[J]. J Mater Chem A, 2019, 7(42): 24532-24542.
[19]Huang K, Rowe P, Chi C, et al. Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil-water separation[J]. Nat Commun, 2020, 11(1): 1097.
[20]Han Z, Li B, Mu Z, et al. Energy-efficient oil-water separation of biomimetic copper membrane with multiscale hierarchical dendritic structures[J]. Small, 2017, 13(34): 1701121.
[21]Wang H, Wang F, Li Z, et al. In situ reaction enabled surface segregation toward dual-heterogeneous antifouling membranes for oil-water separation[J]. J Hazard Mater, 2023, 460: 132425.
[22]Liu W, Liu Q, Liu Z, et al. In-situ construction of nanocomposite coating by electrostatic enhanced surface segregation toward antifouling oil-water separation membrane[J]. J Membr Sci, 2025, 717: 123663.
[23]Zhang Y, Sun T, Zhang D, et al. The preparation of superhydrophobic polylactic acid membrane with adjustable pore size by freeze solidification phase separation method for oil-water separation[J]. Molecules, 2023, 28(14): 5590.
[24]Yan P, Pu Z, Du M, et al. Preparation of ceramic membranes with small pore size, narrow pore size distribution and investigation of oil-water separation mechanism[J]. J Membr Sci, 2025, 716: 123522.
[25]Pan Z, Cao S, Li J, et al. Anti-fouling TiO2 nanowires membrane for oil/water separation: Synergetic effects of wettability and pore size[J]. J Membr Sci, 2019, 572: 596-606.
[26]Yue Y, Hara M, Mukai Y. Continuous coalescence and separation of oil-in-water emulsion via polyacrylonitrile nanofibrous membrane coalescer[J]. Colloid Surface A, 2023, 657: 130626.
[27]Yue Y, Mukai Y. Electrospun hierarchically structured nanofibrous membrane for highly efficient oil-in-water emulsion coalescence separation[J]. Sep Purif Technol, 2023, 322: 124331.
[28]Shi P, Zhang R, Pu W, et al. Coalescence and separation of surfactant-stabilized water-in-oil emulsion via membrane coalescer functionalized by demulsifier[J]. J Cleaner Prod, 2022, 330: 129945.
[29]Zhu X, Zhu L, Li H, et al. Enhancing oil-in-water emulsion separation performance of polyvinyl alcohol hydrogel nanofibrous membrane by squeezing coalescence demulsification[J]. J Membr Sci, 2021, 630: 119324.
[30]Wang J, He B, Ding Y, et al. Beyond superwetting surfaces: Dual-scale hyperporous membrane with rational wettability for “nonfouling” emulsion separation via coalescence demulsification[J]. ACS Appl Mater Interfaces, 2021, 13(3): 4731-4739.
[31]Kaufmann S F M. Phase separation of O/W-emulsions by coalescence in hydrophobic membranes[J]. Appl Rheol, 2000, 10(3): 162-163.
[32]Yang Y, Li Y, Cao L, et al. Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation[J]. Sep Purif Technol, 2021, 269: 118726.
[33]Ding Y, Zhu Y, Wang J, et al. Slippery hydrogel surface on PTFE hollow fiber membranes for sustainable emulsion separation[J]. Mater Horiz, 2024, 11(23): 6141-6149.
[34]Ding Y, Wang J, Wu J, et al. Binary nanofibrous membranes with independent oil/water transport channels for durable emulsion separation[J]. J Membr Sci, 2023, 673: 121484.
[35]Zhu Y, Ding Y, Wang J, et al. Efficient oil recovery from emulsions through PDMS decorated nanofibrous membranes via aggregation-release demulsification[J]. Sep Purif Technol, 2024, 343: 126934.
[36]Ding Y, Qiu N, Wang J, et al. Oil-water receiving membrane with sub-10 nm surfactant layer for long-lasting oil-water separation[J]. J Membr Sci, 2023, 684: 121820.
[37]Shamsabadi A A, Kargari A, Babaheidari M B, et al. Separation of hydrogen from methane by asymmetric PEI membranes[J]. J Ind Eng Chem, 2013, 19(5): 1680-1688.
[38]Okhovat A, Karimi M, Zokaee Ashtiani F. A new perspective and comparative study on demixing and gelation behavior of cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate ternary solutions[J]. Polym Eng Sci, 2018, 58(7): 1135-1145.
[39]Mazinani S, Darvishmanesh S, Ehsanzadeh A, et al. Phase separation analysis of Extem/solvent/non-solvent systems and relation with membrane morphology[J]. J Membr Sci, 2017, 526: 301-314.
[40]Mat N N I, Chean H M, Shamsuddin N, et al. Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment[J]. Membranes, 2020, 10(6): 121.
[41]Maggay I V, Suba M C a M, Aini H N, et al. Thermostable antifouling zwitterionic vapor-induced phase separation membranes[J]. J Membr Sci, 2021, 627: 119227.
[42]Xu M H, Xie R, Ju X J, et al. Antifouling membranes with bi-continuous porous structures and high fluxes prepared by vapor-induced phase separation[J]. J Membr Sci, 2020, 611: 118256.
[43]Ding Y, Hu B, Zhuang L, et al. Confined channels induced coalescence demulsification and slippery interfaces constructed fouling resist-release for long-lasting oil/water separation[J]. ACS Appl Mater Interfaces, 2021, 13(25): 30224-30234.
[44]Raaijmakers M J T, Benes N E. Current trends in interfacial polymerization chemistry[J]. Prog Polym Sci, 2016, 63: 86-142.
[45]Park S J, Choi W, Nam S E, et al. Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization[J]. J Membr Sci, 2017, 526: 52-59.
[46]Karan S, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351.
[47]Ye Y, Qiu N, Qiu Z, et al. Acetone extraction induced piperazine diffusion reaction for regulating thin film composite nanofiltration membrane[J]. J Membr Sci, 2024, 694: 122426.
[48]Xu S, Liu J, Wang J, et al. Guanidinium manipulated interfacial polymerization for polyamide nanofiltration membranes with ultra-high permselectivity[J]. J Membr Sci, 2023, 687: 122003.
[49]Micah A, Victor L, Ji Y L, et al. Correlating PSf support physicochemical properties with the formation of piperazine-based polyamide and evaluating the resultant nanofiltration membrane performance[J]. Polymers, 2017, 9(10): 505.
[50]Wang Y, Lin H, Xiong Z, et al. A silane-based interfacial crosslinking strategy to design PVDF membranes with versatile surface functions[J]. J Membr Sci, 2016, 520: 769-778.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号