荷正电导电纳滤膜的构建及其分离性能研究 |
作者:王建宇1,2, 焦瑶瑶3,4, 崔振宇4 |
单位: 1. 凯里学院 理学院, 凯里 556011; 2. 浙江大学 膜与水处理技术教育部工程研究中心, 杭州 310030; 3. 日东电工(上海松江)有限公司, 上海 201613; 4. 天津工业大学 材料科学与工程学院, 天津 300387 |
关键词: 导电纳滤膜; 铜离子; 电场; 选择性分离 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.04.007 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(4):65-76 |
摘要: |
为提高纳滤膜对多价离子的截留以及“多价/一价”离子的选择性分离效果,本研究采用热致相分离技术(TIPS)制备聚偏氟乙烯/苯乙烯-马来酸酐共聚物(PVDF/SMA)平板膜,通过SMA中的酸酐(MA)与聚乙烯胺(PVAM)交联后再与单宁酸(TA)进行共沉积,再通过TA的酚羟基与氨基化碳纳米管(n-CNT)发生反应形成荷正电杂化导电分离层。对膜表面及截面微观结构以及膜的亲水性、荷电性、导电性和分离性能等进行表征和测试,对比施加电场对Cu2+截留率、Na+/Cu2+的选择性分离以及通量的影响。结果表明,电压由0 V增加到2.5 V时,导电膜对Cu2+截留率由90.2%提高到99.3%,Na+/Cu2+分离因子从7.9升至114.57,而通量维持在36 L/(m2·h)左右基本不变。电压超过2.5 V时因发生析氢反应而降低膜对Cu2+的截留。提出施加适当的电压可显著提高导电膜对Cu2+的截留率以及Na+/Cu2+的选择性分离效果的“尺寸筛分+电场强化静电排斥”共同作用机制。本研究对制备面向从废水中回收有价资源的导电纳滤膜有一定的借鉴作用。 |
In order to improve the rejection of multivalent ions and the selective separation performance of “multivalent/monovalent” ions by nanofiltration membrane, in this work, polyvinylidene fluoride/styrene maleic anhydride (PVDF/SMA) flat membranes were prepared using thermally induced phase separation (TIPS) technology. After crosslinking with polyethyleneimine (PVAM) and anhydride (MA), it was co-deposited with tannic acid (TA), a positively charged hybrid conductive layer was formed on the membrane surface by the reaction between the phenolic hydroxyl group of TA and aminated carbon nanotubes (n-CNT). The changes in the microstructure of the membrane surface and cross-sectional separation layer, as well as the membrane surface properties such as hydrophilicity, charge and conductivity were characterized. The effects of electric field on Cu2+retention, Na+/Cu2+selective separation performance and permeability were compared. The results showed that when the voltage increased from 0 V to 2.5 V, the Cu2+rejection increased from 90.2% to 99.3%, and the separation factor of Na+/Cu2+ increased from 7.9 to 114.57 for conductive membrane, while the permeability basically unchanged. When the voltage exceeded 2.5 V, the Cu2+rejection decreased due to hydrogen evolution reaction. The combined mechanism of “size screening and electric field enhanced electrostatic repulsion” is proposed, which can significantly improve the retention of Cu2+and the selective separation performance of Na+/Cu2+by applying appropriate voltage. This study has a certain reference value for the preparation of conductive nanofiltration membrane for the recovery of valuable resources from wastewater. |
基金项目: |
凯里学院校级科研项目(2025ZD007); 国家自然科学基金面上项目(21978213) |
作者简介: |
王建宇(1974-),男,贵州望谟人,博士,高级工程师,主要从事膜材料与膜应用研究 |
参考文献: |
[1]Ajmal M, Rao R A K, Ahmad R, et al. Removal and recovery of heavy metals from electroplating wastewater by using Kyanite as an adsorbent[J]. J Hazard Mater, 2001, 87(1/2/3): 127-137. [2]Feng Y, Yang S, Xia L, et al. In-situ ion exchange electrocatalysis biological coupling (i-IEEBC) for simultaneously enhanced degradation of organic pollutants and heavy metals in electroplating wastewater[J]. J Hazard Mater, 2019, 364: 562-570. [3]Li Q, Liu G, Qi L, et al. Heavy metal-contained wastewater in China: Discharge, management and treatment[J]. Sci Total Environ, 2022, 808: 152091. [4]Jeremias J S D, Lin J Y, Dalida M L P, et al. Abatement technologies for copper containing industrial wastewater effluents - A review[J]. J Chem Chem Eng, 2023, 11(2): 109336. [5]Ncib S, Chibani A, Barhoumi A, et al. Separation of copper and nickel from synthetic wastewater by polymer inclusion membrane containing di(2-ethylhexyl) phosphoric acid[J]. Polym Bull, 2023, 80(11): 12177-12192. [6]Gao F, Du X, Hao X, et al. An electrochemically-switched BPEI-CQD/PPy/PSS membrane for selective separation of dilute copper ions from wastewater [J]. Chem Eng J, 2017, 328: 293-303. [7]Jiao Y, Yang J, Zhang J, et al. Removal of heavy metal ions from acidic wastewater by constructing positively charged hollow fiber nanofiltration separating-layer based on Fe(Ⅲ)/codeposition-quaternization[J]. J Water Process Eng, 2023,56:104450. [8]Li Q, Liu H, Ji Y, et al. Ultrahigh-efficient separation of Mg2+/Li+ using an in-situ reconstructed positively charged nanofiltration membrane under an electricfield [J]. J Membr Sci, 2022, 641: 119880. [9]Hu C, Liu Z, Lu X, et al. Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane[J]. J Mater Chem A, 2018, 6(11): 4737-4745. [10]Fan X, Zhao H, Liu Y, et al. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance[J]. Environ Sci Technol, 2015, 49(4): 2293-2300. [11]Hu C, Liu Z, Lu X, et al. Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane[J]. J Mater Chem A, 2018, 6(11): 4737-4745. [12]Wei Q, Wu C, Zhang J, et al. Fabrication of surface microstructure for the ultrafiltration membrane based on “active-passive” synergistic antifouling and its antifouling mechanism of protein[J]. React Funct Polym,2021, 169: 105068. [13]汤申艺,武彪,崔振宇.基于羟醛缩合反应构建电中性中空纤维疏松纳滤分离层及染料去除的研究[J].膜科学与技术, 2024, 44(2): 125-133. [14]Bian L, Shen C, Song C, et al. Compactness-tailored hollow fiber loose nanofiltration separation layers based on “chemical crosslinking and metal ion coordination” for selective dye separation[J]. J Membr Sci, 2021, 620: 118948. [15]武成远,崔振宇.具有“刚性柔性”双重协同抗污染功效PVDF膜表面微结构的设计及抗污染性能[J].膜科学与技术, 2024, 44(2): 140-149. [16]Xu Y, Guo D, Li T, et al. Manipulating the mussel-inspired co-deposition of tannic acid and amine for fabrication of nanofiltration membranes with an enhanced separation performance[J]. J Collo Inter Sci, 2020, 565: 23-34. [17]Sowmya A, Meenakshi S. A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate[J]. Chem Eng J, 2014, 257: 45-55. [18]Qiu W, Zhao Z, Du Y. Antimicrobial membrane surfaces via efficien polyethyleneimine immobilization and cationization[J]. Appl Surf Sci, 2017, 426: 972-979. [19]Xu Y C, Wang Z X, Cheng X Q, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chem Eng J, 2016, 303:555-564. [20]Hou L X, Wu B, Yu D B, et al. Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation [J]. J Membr Sci, 2018, 557: 49-57. [21]Nicholas W, Maria M, Andriy Y, et al. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities[J]. Appl Mater Inter, 2015, 7: 6620-6628. [22]Liu X, Demir N K, Wu Z, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. J Am Chem Soc, 2015, 137 (22): 6999-7002. [23]Li P S, Jiang L, Liu L F, et al. Chelation-based metal cation stabilization of graphene oxide membranes towards efficient sieving of mono/divalent ions[J]. J Membr Sci, 2022, 655:120604. [24]Pang X, Tao Y Y, Xu Y Q, et al. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers[J]. J Membr Sci, 2020, 595:117544. [25]Hou L, Pan J, Yu D, et al. Nanofibrous composite membranes (NFCMs) for mono/divalent cations separation[J]. J Membr Sci, 2017, 528: 243-250. [26]Zhang N, Li Y, Zhang W, et al. Development of metal-ligand ion-exchange membranes functionalized with crown ether-ionic liquids for selective Li+/Mg2+ separation[J]. Mater Chem A, 2025, 13 (16): 11732-11748. [27]Li H W, Wang Y, Li T Y, et al. Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine[J]. Chem Eng J, 2022, 438:135658. [28]Ouyang L, Malaisamy R, Bruening M L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations[J]. J Membr Sci, 2008, 310(1): 76-84. [29]Irfan M, Wang Y, Xu T. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity[J]. Chem Eng J, 2020, 383: 123171. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号