| 用于膜蒸馏的PVAmCNT/PTFE中空纤维Janus膜的制备及表征 |
| 作者:刘 忆, 刘昕扬, 蒋兰英, jaafar juhana |
| 单位: 1. 中南大学 冶金与环境学院, 长沙 410083; 2. 国家重金属污染防治中心, 长沙 410083; 3. 马来西亚理工大学 化工和能源学院, 新山 81310; 4. 马来西亚先进膜技术研究中心, 新山 81310 |
| 关键词: 碳纳米管; 中空纤维Janus膜; 膜蒸馏; 脱盐; 抗油污 |
| DOI号: 10.16159/j.cnki.issn1007-8924.2025.05.006 |
| 分类号: 号: TQ028; X703.1 |
| 出版年,卷(期):页码: 2025,45(5):51-65 |
|
摘要: |
|
通过真空抽滤在聚四氟乙烯(PTFE)疏水膜表面沉积羧基化多壁碳纳米管(mCNT)层,随后在其上进行聚乙烯醇(PVA)涂覆与戊二醛(GA)交联,制备了以PVA-mCNT复合材料为亲水层的中空纤维Janus膜。扫描电子显微镜(SEM)观测显示,PVA-mCNT复合涂层致密,厚度为70~80 μm,表面有微纳级粗糙结构;傅里叶变换红外光谱(FTIR)分析验证了该层化学结构及交联的成功构建;接触角测试证实了其亲水性。直接接触式膜蒸馏(DCMD)处理3.5%(质量分数)NaCl盐水的运行结果表明,PVA-mCNT/PTFE复合膜平均通量为7.09 kg/(m2·h),相比PVA/PTFE复合膜和PTFE基膜有一定程度升高;所有膜的初始脱盐率均>99.9%,但Janus膜的脱盐率在测试的后半程会降至低过PTFE基膜的脱盐率。处理含500 μL/L大豆油的NaCl盐水时,PTFE基膜的通量在第一天DCMD开始后的4 h接近零;PVA/PTFE膜和PVA-mCNT/PTFE膜的通量分别在第二天和第三天降至零。所有膜通量下降均伴随脱盐率下降。 |
|
Hollow fiber Janus membranes with polyvinyl alcohol (PVA) and carboxylated multi-walled carbon nanotubes (mCNTs) composite material as hydrophilic layer was fabricated via deposition of mCNT on the surface of poly tetrafluoroethylene (PTFE) hydrophobic membrane by vacuum filtration, followed with PVA coating and glutaraldehyde (GA) crosslinking. Regarding PVA-mCNT composite layer, scanning electron microscope (SEM) revealed that it was dense with a thickness of 70~80 μm and a rough outer surface; Fourier transform infrared spectrometer (FTIR) proved its chemical structure and occurrence of crosslinking; and contact angle indicated its hydrophilicity. In direct contact membrane distillation (DCMD) operation treating 3.5% (mass fraction) NaCl aqueous solution, PVA-mCNT/PTFE membrane had a average flux of 7.09 kg/(m2·h), which was slightly higher than those of PVA/PTFE composite membrane and PTFE substrate. All the membranes had an original desalination rate higher than 99.9%; in the latter half of the test, however, desalination rate of Janus membranes were reduced to be lower than that of PTFE substrate. In DCMD treating saline containing 500 μL/L soybean oil, PTFE substrate lost its flux on the 1st day after 4 h. Whereas, for PVA/PTFE and PVA-mCNT/PTFE composite membranes, their flux reached zero on the 2nd and 3rd day, respectively. All the flux reduction were accompanied with deteriorating desalination rate. |
|
基金项目: |
| 国家自然科学基金重点项目(52534005); 湖南省教育厅重点项目(22A0003) |
|
作者简介: |
| 刘忆(2000-),女,湖南常德人,硕士研究生,主要研究方向为膜蒸馏 |
|
参考文献: |
| [1]Ismail A F, Matsuura T. Membrane separation processes theories, problems, and solutions[M]// Amsterdam: Elsevier, 2021. [2]Choi P J, Lee J, Jang A. Interconnection between renewable energy technologies and water treatment processes[J]. Water Res, 2025, 261: 122037. [3]Jiang L Y, Li N. Membrane-based separation in metallurgy: Principles and applications[M]// Amsterdam: Elsevier, 2016. [4]Alenezi A, Alabaiadly Y. Emerging technologies in water desalination: A review and future outlook[J]. Energy Nexus, 2025, 17: 100373. [5]Patel R V, Yadav A, Shahi V K, et al. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities[J]. Sci Total Environ, 2025, 969: 178749. [6]Liu H B, Li B, Guo L W, et al. Current and future use of membrane technology in the traditional Chinese medicine industry[J]. Sep Purif Rev, 2021, 51(4): 484-502. [7]王超, 赵一, Muhammad Mujahid, 等. 面向膜蒸馏的抗润湿、抗污染、抗结垢新型膜研究进展[J]. 膜科学与技术, 2024, 44(1): 157-167. [8]Guo Q, Huang Y, Xu M D, et al. PTFE porous membrane technology: A comprehensive review[J]. J Membr Sci, 2022, 664: 121115. [9]Gontarek-Castro E, Castro-Muoz R, Lieder M. New insights of nanomaterials usage toward super- hydrophobic membranes for water desalination via membrane distillation: A review[J]. Crit Rev Env Sci Tec, 2021, 52(12): 2104-2149. [10]陈慧敏, 刘公平, 金万勤. 面向膜蒸馏的全疏膜研究进展[J]. 膜科学与技术, 2023, 43(1): 1-12. [11]解保雷, 史志伟, 高永钢. 双疏膜膜蒸馏处理含有机溶剂废水的研究[J]. 膜科学与技术, 2024, 44(1): 130-136. [12]Afsari M, Shon H K, Tijing L D. Janus membranes for membrane distillation: Recent advances and challenges[J]. Adv Colloid Interfac, 2021, 289: 1-22. [13]张兴振, 靳健, 朱玉长. 非对称浸润性Janus膜的制备及应用进展[J]. 膜科学与技术, 2023, 43(3): 148-157. [14]Tang M, Hou D Y, Ding C L, et al. Anti-oil-fouling hydrophobic-superoleophobic composite membranes for robust membrane distillation performance[J]. Sci Total Environ, 2019, 696: 1-14. [15]Lou M M, Fang X F, Liu Y B, et al. Robust dual-layer Janus membranes with the incorporation of polyphenol/Fe3+ complex for enhanced anti-oil fouling performance in membrane distillation[J]. Desalination, 2021, 515: 115184. [16]Chen Y M L, Lu K J, Gai W X, et al. Nanofiltration-inspired Janus membranes with simultaneous wetting and fouling resistance for membrane distillation[J]. Enviro Sci Technol, 2021, 55(11): 7654-7664. [17]Li B, Hou D Y, Li C L, et al. Mussels-inspired design a carbon nanotube based underwater superoleophobic/hydrophobic Janus membrane with robust anti-oil-fouling for direct contact membrane distillation[J]. Sep Purif Technol, 2022, 294: 121163. [18]Han M Y, Dong T, Hou D Y, et al. Carbon nanotube based Janus composite membrane of oil fouling resistance for direct contact membrane distillation[J]. J Membr Sci, 2020, 607: 118078. [19]Yan K K, Jiao L, Lin S S, et al. Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation[J]. Desalination, 2018, 437: 26-33. [20]李明, 孙扬, 王聪, 等. 一步法制备Janus中空纤维膜及其膜蒸馏性能研究[J]. 膜科学与技术, 2022, 42(3): 32-40. [21]Yang H C, Zhong W W, Hou J W, et al. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation[J]. J Membr Sci, 2017, 523: 1-7. [22]Yang G, Ng D, Huang Z, et al. Janus hollow fibre membranes with intrusion anchored structure for robust desalination and leachate treatment in direct contact membrane distillation[J]. Desalination, 2023, 551: 116423. [23]Feng X, Jiang L Y, Song Y. Titanium white sulfuric acid concentration by direct contact membrane distillation[J]. Chem Eng J, 2016, 285: 101-111. [24]Hu B, Ouyang J T, Jiang L Y. Influence of flocculant polyacrylamide on concentration of titanium white waste acid by direct contact membrane distillation[J]. Chinese J Chem Eng, 2020, 28(9): 2483-2496. [25]Guo H, Zhang D, Jiang L Y. PAN/PVA composite nanofibrous membranes for separating oil-in-water emulsion[J]. J Polym Res, 2022, 29: 108. [26]Lai Y J, Oh P C, Chew T L, et al. Surface repellency beyond hydrophobicity: A review on the latest innovations in superomniphobic surfaces[J]. Acs Omega, 2025, 10(6): 5172-5192. [27]Gong L, Zhang J W, Wang W D. Ion-specific effect on self-cleaning performances of polyelectrolyte-functionalized membranes and the underlying nanomechanical mechanism[J]. J Membr Sci, 2021, 634: 119408. [28]伊斯雷尔奇维利 J N. 分子间力和表面力[M]//王晓琳, 唐元晖,卢滇楠, 译.北京: 科学出版社, 2014. [29]Ali N, Bilal M, Khan A, et al. Engineered hybrid materials with smart surfaces for effective mitigation of petroleum-originated pollutants[J]. Engineering, 2021, 7(10): 1492-1503. [30]Hu S Y, Zhang Y, Lawless D, et al. Composite membranes comprising of polyvinylamine-poly(vinyl alcohol) incorporated with carbon nanotubes for dehydration of ethylene glycol by pervaporation[J]. J Membr Sci,2012,417/418: 34-44. [31]李志强, 吕娜, 蒋兰英. 商业正渗透膜的改性及其用于处理焦化废水的研究[J]. 化工学报, 2020, 71(S1): 461-470. [32]Jiang Z W, Karan S, Livingston A G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis[J]. Adv Mater, 2018, 30(15): 170593. [33]Saliba S, Ruch P, Volksen W, et al. Combined influence of pore size distribution and surface hydrophilicity on the water adsorption characteristics of micro-and mesoporous silica[J]. Micropor Mesopor Mat, 2016, 226: 221-228. [34]Tang C Y, Zhang Q, Wang K, et al. Water transport behavior of chitosan porous membranes containing multi-walled carbon nanotubes (MWNTs)[J]. J Membr Sci, 2009, 337(1/2): 240-247. [35]Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. [36]詹志刚, 肖金生, 罗志平, 等. PEMFC中水的饱和蒸汽压力与其中多孔介质特征关系研究[J]. 武汉理工大学学报, 2005, 5: 727-730. [37]Goh S W, Zhang Q Y, Zhang J S, et al. Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process[J]. J Membr Sci, 2013, 438: 140-152. [38]Wei Q, Yang D.A self-healing polyvinyl alcohol-based composite with high thermal conductivity and excellent mechanical properties[J]. Compos Commun,2023,39: 101561. [39]Yang S Y, Ma C C M, Teng C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites[J]. Carbon, 2010, 48(3): 592-603. [40]Samani M K, Khosravian N, Chen G C K, et al. Thermal conductivity of individual multiwalled carbon nanotubes[J]. Int J Therm Sci, 2012, 62(S1): 40-43. [41]Han Z D, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Prog Polym Sci, 2011, 36(7): 914-944. [42]Zhu L, Li H, Yin Y Y, et al. One-step synthesis of a robust and anti-oil-fouling biomimetic cactus-like hierarchical architecture for highly efficient oil/water separation[J]. Environ Sci-Nano, 2020, 7: 903-911. [43]Ben-Amotz D. Water-mediated hydrophobic interactions[J]. Annu Rev Phys Chem, 2016, 67(1): 617. [44]Zhang X H, Wei C J, Ma S Y. Janus poly(vinylidene fluoride) - graft - (TiO2 nanoparticles and PFDS) membranes with loose architecture and asymmetric wettability for efficient switchable separation of surfactant-stabilized oil/water emulsions[J]. J Membr Sci, 2021, 640: 119837. |
|
服务与反馈: |
| 【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号